
Knowledge Expansion and Counterfactual Interaction for Reference-Based
Phishing Detection

Ruofan Liu1,2, Yun Lin1∗, Yifan Zhang2, Penn Han Lee2, Jin Song Dong2

Shanghai Jiao Tong University1 National University of Singapore2

liu.ruofan16@u.nus.edu, lin_yun@sjtu.edu.cn, zyifan828@gmail.com, leepennhan98@gmail.com, dcsdjs@nus.edu.sg

Abstract

Phishing attacks have been increasingly prevalent in recent
years, significantly eroding societal trust. As a state-of-the-art
defense solution, reference-based phishing detection excels in
terms of accuracy, timeliness, and explainability. A reference-
based solution detects phishing webpages by analyzing their
domain-brand consistencies, utilizing a predefined reference
list of domains and brand representations such as logos and
screenshots. However, the predefined references have limita-
tions in differentiating between legitimate webpages and those
of unknown brands. This issue is particularly pronounced
when new and emerging brands become targets of attacks.

In this work, we propose DynaPhish as a remedy for
reference-based phishing detection, going beyond the prede-
fined reference list. DynaPhish assumes a runtime deployment
scenario and (1) actively expands a dynamic reference list,
and (2) supports the detection of brandless webpages with
convincing counterfactual explanations. For the former, we
propose a legitimacy-validation technique for the genuine-
ness of the added references. For the latter, we propose a
counterfactual interaction technique to verify the webpage’s
legitimacy even without brand information. To evaluate Dy-
naPhish, we constructed the largest dynamic phishing dataset
consisting of 6344 interactable phishing webpages, to the
best of our knowledge. Our experimental results demonstrate
that DynaPhish significantly improves the recall of the state-
of-the-art approach by 28% while maintaining a negligible
cost in precision. Our controlled wild study on the emerging
webpages further shows that DynaPhish significantly (1) im-
proves the state-of-the-art by finding on average 9 times more
real-world phishing webpages and (2) discovers many uncon-
ventional brands as the phishing targets. Our code is available
at https://github.com/code-philia/Dynaphish.

∗Corresponding author

1 Introduction

Phishing attacks have increasingly emerged in recent years
[26, 47–49, 59]. As one of the most prevalent cyber-crimes,
phishing attacks are designed to steal users’ credentials, result-
ing in significant financial losses [7,54], undermining societal
reputation [52], and laying a foundation for launching subse-
quent attacks [36, 56].

Researchers have proposed multiple techniques to detect
phishing, including blacklist-based solutions [10, 23, 24] and
feature-engineering based solutions [33, 40, 44, 60, 61]. How-
ever, in recent years, reference-based solutions [25, 27, 29,
32, 42, 43] have gained popularity due to their superior per-
formance in terms of accuracy, timeliness, and explainabil-
ity [25, 42, 43].

Equipped with a predefined reference list of domain
and brand representations (e.g., logos and screenshots), a
reference-based phishing detector [25,27,29,32,42,43] detects
phishing webpages based on their domain-brand consisten-
cies. Given a webpage, if it can be matched with a reference
brand representation (e.g., PayPal logo) but its domain (e.g.,
poypal.com) cannot align with the target domain (e.g., pay-
pal.com), an alarm is reported with the brand-domain incon-
sistency as the explanation. Compared to blacklist-based and
feature-engineering based phishing detectors, state-of-the-art
reference-based detectors are reported to detect many more
emerging phishing webpages in practice [42, 43].

Although reference-based phishing detectors are effective,
they have one critical limitation: they cannot differentiate
legitimate webpages from webpages with unknown brands.
As a result, both types of webpages are often classified as non-
phishing or benign, in an attempt to minimize false positives.
Unfortunately, this conservative approach can be vulnerable
to phishing attacks that target emerging or regional brands, as
attackers frequently launch new phishing campaigns [28].

According to our one-month empirical study [5], phishing
campaigns exhibit high levels of dynamism. In a span of just
15 days, the completeness of a predefined reference list can be-
come obsolete by 31.3%. Furthermore, as illustrated in Figure

https://github.com/code-philia/Dynaphish

1, a subset of phishing webpages (approximately 1.5%) either
lack brand information or are completely brandless. These
factors contribute to a notable increase in false negatives over
time, ultimately reducing the effectiveness of reference-based
phishing detectors.

In this work, we propose the DynaPhish framework to
enhance any reference-based phishing detectors by address-
ing the aforementioned challenges. Assume that a reference-
based phishing detector is deployed to examine a stream of
webpages, DynaPhish is designed to (1) actively expand the
reference list and (2) detect brandless phishing webpages
with convincing explanation.

• Reference Expansion: We design a reference-validation
technique for the crawled legitimate/phishing webpages, ex-
tracting the relevant domain and brand representation (e.g.,
logo) into a verifiable reference in the list. Specifically, we
design a popularity-driven validation technique to conser-
vatively estimate the legitimacy of a webpage domain with
its popularity on the Internet. Our rationale lies in the fact
that phishing webpages have no incentive to be published
for lasting public societal popularity. The verified pair of
domain and brand will be included as a new reference in
the list.

• Behavioral Invariant: We design a behavior-validation
technique as a partial remedy for brandless phishing web-
pages. We report observed behavioral invariants regard-
ing the verifiability of collected credentials on the web-
pages and the existence of evasive redirection. Based on
such invariants, we interact with brandless credential-taking
webpages by feeding fake credentials, and record their re-
sponses to infer the level of phishing suspicion.

To evaluate how DynaPhish can improve the reference-
based phishing detectors, we construct DynaPD (Dynamic
Phishing Dataset), the largest live and interactable phishing
kits dataset to the best of our knowledge. Existing phish-
ing datasets maintain [42] static phishing webpage URLs,
screenshots, and HTML code. In contrast, DynaPD works
as a clean container hosting 6344 runnable and interactable
phishing webpages. Our extensive experiments show that (1)
DynaPhish can boost the recall of phishing detection by 28%
with a negligible cost in precision and (2) with the increase
of the reference list (from 274 to 4177), the state-of-the-art
phishing detectors incur little runtime overhead (about 0.5
second) to make the prediction. Moreover, our one-month
wild study on the Internet shows that (1) DynaPhish expands
reference list by 20 times, (2) DynaPhish allows the state-of-
the-art phishing detectors to additionally find 9 times more
real-world phishing webpages.

In summary, our contributions lie in the following:

• We challenge the technical assumption of reference-based
phishing detectors and demonstrate that relying solely on a

Figure 1: A brandless phishing webpage (URL:
https://fb0ik.mydrinkf.xyz/)

predefined reference list may not be adequate to cover the
constantly evolving phishing campaigns.

• We propose DynaPhish, a systematic remedy (with refer-
ence expansion and behavioral invariant) for any reference-
based phishing detectors, fixing their inherent limitations
on deployment.

• We have constructed and released DynaPD, which stands as
the largest dynamic phishing dataset to date. It comprises
6344 and live phishing kits, offering a comprehensive and
replicable environment for studying phishing behaviors.
This dataset serves as a valuable resource for the develop-
ment of novel phishing detection solutions and facilitates
further empirical studies within the research community.

• Our extensive experiments in both close-world and open-
world environments show that DynaPhish is effective and
practical, significantly improving the recall of the state-of-
the-art phishing detectors with minimal impact on precision
and efficiency.

2 Threat Model

We denote a reference-based phishing detector as F , accom-
panied with a list of references R = {re f |re f = (d,r)} where
each reference re f is a pair of legitimate domain d (e.g., pay-
pal.com) and its brand representation r (e.g., screenshot and
logo). Note that, a brand can have multiple domains and rep-
resentations. The detector F reports a phishing webpage w
along with its targeted brand b if b is kept in the reference list.
Otherwise, F reports w as benign.

We assume that the attacker is well aware of the mechanism
of F , but the attacker cannot modify F . Additionally, the
attacker has full control over the phishing site, enabling them
to manipulate the target and webpage design to compromise
F in the following manners.
T1: Phishing with Novel Brand. While F effectively pro-
vides information on both the phishing target and the result of
suspicious webpages, attackers can exploit phishing webpage
generators, such as [20], to repeatedly test brands for vulnera-
bilities. By constructing phishing webpages for new brands
absent from the reference list, attackers can elude detection by

Table 1: The functional facilities of reference-based phishing
detectors. Different reference-based detectors implement the
abstract functions in different ways.

Function Symbolic
Manifestation Description

domain(.) w→ d Fetch the domain of a web-
page w.

rep(.) w→ r Extract webpage w’s repre-
sentation. The representa-
tion can be screenshot [25,
32] or logo [27, 42, 43]

match(.,.) (r,rre f)→ sim Compare the similarity be-
tween the target representa-
tion r and the referenced rep-
resentation rre f .

F and increase the likelihood of false negatives. This poses a
significant threat to the reputation of emerging and regional
businesses, particularly in domains like blockchain [3], au-
tonomous driving [1], and cybersecurity [2].
T2: Phishing with Implicit Brand. F detects brand-domain
inconsistencies by analyzing the branding intention of web-
pages. However, attackers can create webpages with implicit
brand intention, where the logo is absent (see Figure 1). This
deceptive tactic can fool F and lead to the attacker’s webpage
being misreported as benign.
T3: Phishing with Obfuscated/Adversarial Content. F
may utilize HTML heuristics to extract logos and screenshot
styles. An attacker can obfuscate the HTML code to make
those heuristics ineffective. Furthermore, F may use deep
learning models to predict logos and screenshots. An attacker
can construct adversarial logos and screenshot images to in-
fluence the detection effectiveness of F .

3 Approach

3.1 Overview

We assume that DynaPhish is deployed with reference-based
phishing detectors to examine a stream of web pages. We
expect that DynaPhish can enhance the reference by adapting
to regional and temporal interests. For example, an organiza-
tion in South Asia can have its customized references (e.g.,
local popular banks) compared to those in North America.
The reference list can also include emerging companies in a
timely manner. Neither of these can be easily considered with
a predefined reference list.

Figure 2 shows an overview of how DynaPhish works, con-
sisting of two components: (1) a reference-based phishing
detector such as VisualPhishNet [25], Phishpedia [42] and
PhishIntention [43] and (2) the DynaPhish framework facili-
tating its effectiveness.

Reference-based Phishing Detection Given a webpage w
and a reference list R = {re f |re f = (d,r)} where d repre-
sents referenced domain and r represents the corresponding
brand representation such as logo, we define a reference-
based phishing detector F as a function F : (w,R) → b
(b∈R ∪{null}) where b is the matched brand reference in R
for the webpage w. To clarify, if the matched brand reference
is denoted as b = (d,r), we use b.d to represent the domain
of the brand and b.r to represent the brand representation. If
there is no match between the webpage and any reference in
R , we set b to null.

F consists of the functional facilities as listed in Ta-
ble 1, including domain extraction (i.e. domain(.)), repre-
sentation extraction (i.e., rep(.)) and representation match-
ing (i.e., match(., .)). Generally, the webpage w is reported
as phishing if (1) b ̸= null (i.e., the brand representation of
w can be matched with that of a referenced brand) and (2)
domain(w) ̸= b.d (i.e. the domain of w is not consistent with
that of the referenced brand). Such domain-brand inconsis-
tency can help us detect and explain the potential phishing
attacks.

However, the state-of-the-art [25, 42, 43] does not distin-
guish the following scenarios, for conservatively controlling
the false positive rate:

• w is a benign webpage, i.e., b ̸= null and domain(w)= b.d;

• w targets for an unknown brand, i.e., b= null. Specifically,
given the extracted brand representation (such as logo),
there is no reference can be matched in R .

DynaPhish Framework DynaPhish enhances the detection
of the state-of-the-art when an unknown webpage (i.e., b =
null) is detected, consisting of a Brand Knowledge Expansion
module and a Webpage Interaction module.

Given a new webpage w, the Brand Knowledge Expansion
module utilizes the domain(w) and rep(w) to mitigate the lim-
itation of the predefined R . We design validation techniques
(see Section 3.2) to validate the legitimacy of domain(w) via
estimating its popularity on the Internet. Then, a new refer-
ence re f = (domain(w),rep(w)) will be created. In addition,
for some non-indexed webpages on the Internet, we use the
brand representation rep(w) to further validate its domain
legitimacy. If such a domain-representation pair can be ex-
tracted and validated, DynaPhish includes it as a reference to
enhance R .

If DynaPhish is unable to extract the domain-representation
pair, we consider the webpage w to be brandless. In this case,
we use the Webpage Interaction module to evaluate its suspi-
ciousness by utilizing our designed behavioral invariants (see
Section 3.3.1).

Reference-based
Phishing Detector

Webpage
Stream

reference listreference list

Phishing Alarm

Brand Knowledge Expansion

unknown brand

Webpage
Interaction

input report

inferred reference complementary
report

failure
Popularity-driven

Validation

Representation-
driven Validation

logo

usenix.org

domain < usenix.org , >< usenix.org , >

domain-representation pair

Reference-based
Phishing Detection

DynaPhish Framework

Figure 2: Overview of DynaPhish Framework. The Brand Knowledge Expansion module returns an inferred domain-brand pair.
The Webpage Interaction module complements the detection by observing the suspicious behaviors of a webpage.

3.2 Brand Knowledge Expansion

In a reference-based detector, a webpage w is parsed into
a domain-representation pair p = (domain(w),rep(w)) =
(d,r), where r is unknown with respect to the reference list
R . To ensure the trustworthiness of the domain d, we have
designed DynaPhish to validate it. To this end, we validate
the legitimacy of the domain-representation pair using two
hypotheses in sequence:

• H1: The webpage w is a popular benign webpage.

• H2: The webpage w is a phishing webpage, targeting for a
popular benign webpage.

If we can validate H1, then the domain of w (along with
its logo on the homepage) is deemed trustworthy. If we can
validate H2, we can identify the real and trustworthy domain
that w is attempting to fake. We can then construct a new
domain-representation pair in R using this information.

3.2.1 Popularity as Benignity

Phishing attackers have no incentive to publicly expose their
links for long-term recognition, as they typically share them
privately via email [49]. To evade detection by blacklist-based
engines like Google Safe Browsing, these links may persist for
a few days [48]. Hence, we argue that the condition "webpage
w is popular" is sufficient but unnecessary to classify it as
benign (i.e., non-phishing).

Hence, the problem of validating benignity can be reduced
to that of validating popularity, which is an easier problem to
solve. We define the webpage w as popular if the following
criteria are met:

• C1: w is indexed by the state-of-the-art search engine (e.g.,
Google),

Search
Engine
Search
Engine

Domains

usenix.org
domain

popularity
validation

description

Figure 3: Popularity Validation Overview

• C2: w ranks high in the recommendation when its descrip-
tion is fed to search engine, and

• C3: w has been alive for a long period of time.

The first and second criteria are devised based on the Page
Ranking algorithm [50], which suggests that w could poten-
tially be the most linked webpage under certain topics. The
last criterion is formulated based on empirical observations
that popular webpages tend to have a longer lifespan. Our
empirical study on 30K Alexa webpages [21] indicates that
their average lifespan is 10.1 years. Our statistical analysis of
10K recorded phishing webpages reveals that none of them
can be classified as popular according to the definition above.
For more details, please refer to the DynaPhish website [5].

This problem reduction results in a sound but incomplete
solution for DynaPhish, which is generally acceptable since it
enables us to cautiously exclude potentially inconclusive and
ambiguous references from the reference list.

3.2.2 Popular Benign Hypothesis (H1)

We validate H1 by examining the popularity of the visited
webpage. The workflow is illustrated in Figure 3, which com-
prises a popularity validation process and a consistency vali-

Algorithm 1: Popularity Validation
Input : URL url, retrieval limit k, life span threshold thlife
Output :domain legitimacy is_legitimate

1 domain, tld = domain(url), top-level-domain(url);
// regards the HTML tag <title>

2 page_title = parse_title(url);
3 W = search_engine.search(domain.tld, page_title,k);
4 for w ∈W do
5 if w.domain == domain and w.tld == tld and

is_long_alive(w, thlife) then
6 return true;

7 return false;

Logo
Search
Engine
Search
Engine

WebsitesRetrieved logos

Representation
matching

Representation
extraction

Google Logo
Detection

Brand name: USENIX

Figure 4: Representation Validation Overview

dation process, as specified in Algorithm 1. Algorithm 1 takes
input as the visiting URL url and a retrieval limit k, validat-
ing whether the top-k retrieved webpages can (1) contain the
domain of url (the first condition in line 5), and (2) satisfy
our life-span criteria (the second condition in line 5). The
description of w is parsed by extracting its domain and the
webpage title. Moreover, the life-span of w is validated in two
ways:

• Search Metadata: The search engine can return the meta-
data of each webpage, including the webpage publication
date.

• WHOIS Service: The WHOIS service [19] can also pro-
vide the historical data of a domain.

3.2.3 Phishing Hypothesis (H2)

We proceed to validate H2 if Algorithm 1 returns false, i.e.,
domain(w) is not popular. Our validation rationale is that w is
phishing if (1) w is not popular and (2) there exists a popular
webpage w′ with the same brand intention with w.

Figure 4 shows our design for H2 validation. Given a re-
ported brand representation r, such as a logo, we first derive
the representation description and feed it into a search engine.
To achieve this, we adopt Google’s logo detection service [9]
to predict the brand name given a logo. Our investigation

shows that the service is well capable of detecting the brand
names for both text-based logos and non-text-based logos.
Subsequently, Google search engine recommends the relevant
webpages given the detected brand name. For each of the high-
ranking (i.e., top-k) recommendations w′ (w′ ̸= w), we use the
representation-extraction function (i.e., rep(.), see Table 1)
provided by the reference-based phishing detector to extract
its brand representation r′. We then use the representation-
matching function (i.e., match(., .), see Table 1) to check
whether r can match r′. If r matches r′, we conclude that w
is suspicious of phishing and construct p = (domain(w′),r′)
as a new reference. If none of the high-ranking webpages
have a brand representation that matches r, we conservatively
discard w for reference enhancement.

3.2.4 Adaptation to Logo and Domain Variants

The expansion of the reference can result in false positives
when a company has multiple domain variants, and false neg-
atives when a company has multiple logo variants. In the case
of domain variants, if a company has two domains, d1 and
d2, which share the same brand representation, r, a phishing
website with domain d2 may be inaccurately flagged as phish-
ing if only the reference (d1,r) is present in the reference
list. Similarly, in the case of logo variants, if a brand has two
versions of logos, r1 and r2, a phishing website with logo r2
may go undetected if only the reference (d,r1) is included in
the reference list.
Solution for Domain Variants. During the knowledge expan-
sion phase, prior to the phishing detector F raising an alarm
indicating inconsistency between a representation r and its
domain d, denoted as ∃ b∈R such that match(b.r,r)> th but
d ̸= b.d, we conduct additional checks. Specifically, we verify
if w satisfies both popularity validation and representation
validation (as described in Section 3.2.2 and Section 3.2.3).
If the checks are successful, the reference (domain(w),r) is
added to the reference list R .
Solution for Logo Variants. To mitigate this issue, we per-
form an additional search for logo variants using Google
Image Search [11] whenever a new reference (d,r) is added.
Using a user-defined threshold k, we query Google Image
Search with the brand name and the keyword "logo" to re-
trieve the first k logo images along with their context links.
For each image, we verify if the context link corresponds to
the domain d. If there is a match, we include the reference set
(d,rk) in the reference list.

3.2.5 Adversary and Maintenance

Next, we discuss potential adversaries and maintenance issue
of the reference.

Adversary 1 (Intentional Obsolescence) We consider in-
tentional obsolescence as an adversary to DynaPhish. In this

scenario, an attacker can publish a benign webpage under a
newly registered domain and wait for a search engine to index
it (which typically takes several months). During this period,
DynaPhish may include this domain as a reference if all three
criteria (see Section 3.2.1) are satisfied. If the domain is in-
cluded in R , i.e., the domain-representation pair, re f = (d,r),
is included, the attacker can then change the webpage content
to be phishing. Note that, in this case, rnew = rep(wph) ̸= r
where rnew is the brand representation in the phishing web-
page wph. Assume that we can have b= (d∗,r∗)∈R (e.g., via
popularity validation) so that match(r∗,rnew)> th and d∗ ̸= d,
the detector can still raise a phishing alarm. Moreover, d can
lose its popularity once it presents its phishing intention with
wph.

Adversary 2 (Webpage Injection) Another adversary in-
volves injecting a phishing webpage wph into a vulnerable but
benign website (examples of this can be found in the "Injected
Phishing Example" tab on the DynaPhish website [5]). As-
suming that the phishing target of wph is popular, we can find
b = (d∗,r∗)∈R (e.g., via representation validation) such that
match(r∗,r) > th but d∗ ̸= d. As a result, the detector will
raise a phishing alarm.

Maintenance We consider both the intentional and the un-
intentional obsolescence as maintenance problem for the
reference list. Intentional obsolescence occurs when attack-
ers deliberately change benign content to phishing content,
while unintentional obsolescence results from routine updates
to webpage design. We design Algorithm 2 to periodically
cleanse the reference list. In Algorithm 2, for each reference
re f (as a domain-representation pair), we validate its status
(updated or obsolete) by checking (1) its potential adversarial
intention (lines 2-8) and its potential obsolete status (lines
10-11). We first apply the reference-based phishing detector
F on the homepage under the domain of re f to see whether it
can be reported as phishing (lines 2-5). If the alarm is raised
(line 6), it indicates that two domains conflict to share the
same brand intention. Thus, we further validate the popularity
and representation for its benignity (line 7). We remove re f
from the reference list if it can no longer be validated (line 8).
If there is no conflict, we check whether the reported domain-
representation pair from the webpage re f is still the same as
that recorded in the reference list (line 10). If not, we update
the reference (line 11).

3.3 Webpage Interaction

We proceed to the Webpage Interaction module if we can-
not identify any brand information from the webpage since
the reference comparison is no longer feasible. In this work,
we propose two counterfactual behavioral invariants to raise
explainable phishing alarms:

Algorithm 2: Maintenance
Input : reference list R e f , a reference-based phishing

detector F
Output :updated reference list R e f ∗

1 for re f ∈ R e f do
2 d,rold = re f ;

// get updated representation

3 rnew = rep(d);
4 R e f ′ = R e f \{re f};
5 b = F ((d,rnew),R e f ′);

// check adversary (intentional obsolescence)

6 if b ̸= null then
7 if d cannot pass popularity validation OR rnew

cannot pass representation validation then
8 R e f ∗ = R e f ′;

// check unintentional obsolescence

9 else
10 if rnew ̸= rold then
11 R e f ∗ = R e f ∪{(d,rnew)};

12 return R e f ∗;

• Credential Verifiability Invariant: A webpage w is suspi-
cious of phishing if it cannot verify a randomly generated
verifiable credentials (e.g., username or user id).

• Evasion Intention Invariant: A webpage w is suspicious
of phishing if it redirects to a different domain while present-
ing the similar appearance, after the credential submission.

The behavior of a webpage that satisfies these invariants can
serve as an explanation for why a phishing alarm was raised.
It is important to note that both invariants allow for sound
yet incomplete results. For example, a phishing webpage may
covertly obtain credentials in the back-end while displaying
error messages related to verification, such as an incorrect
password warning. However, this approach carries the risk of
arousing suspicion among users.

3.3.1 Technical Design

Algorithm 3 shows our design to evaluate webpage behav-
iors regarding the invariants, which takes a webpage w and a
threshold of the number of trials k, and generates the phish-
ing result (i.e., phishing or benign) and its explanation. Al-
gorithm 3 consists of a set of behavioral primitives such
as checking whether the webpage requires user credentials
(is_require_credential(.)), identifying the inputs of the web-
page (identify_inputs(.)), etc. We generally construct those
behavioral primitives with computer vision techniques to min-
imize the potential risk of HTML code obfuscation.

Algorithm 3 performs the following steps. First, we de-
tect whether the webpage w is a credential-taking webpage
(line 1). If not, we check whether any link in w leads to a

Algorithm 3: Web Interaction
Input : A webpage w, trial threshold k
Output : phishing result y, phishing explanation e

1 if !is_require_credential(w) then
2 w← transit(w);
3 if !is_require_credential(w) then
4 return {benign, “”};

5 I← identify_inputs(w);
6 Iv← recognize_verifiable_input(I);

// no verifiable input

7 if Iv = /0 then
8 return {benign, “”};
9 b← identify_submission_button(w);

10 trial number = 1;
11 while trial number ≤ k do
12 w′← fill_and_submit_form(w,b, I);

// evasion intention invariant

13 if w.domain ̸= w′.domain and w.logo == w′.logo
then

14 return {phishing, “detecting evasion from
original domain”};

// credential verifiability invariant

15 if information_not_verified(w′) then
16 return {phishing, “cannot verify fake user

credential”};
17 trial number ++;

18 return {benign, “”};

credential-taking webpage (line 2). If we cannot find such a
link, we conclude that w does not require user credentials and
report it as benign (lines 3-4). Next, we identify the set of
inputs from w as I (line 5) and recognize the inputs requiring
verifiable information as Iv (line 6). Verifiable information in-
cludes account information that the system can verify, such as
usernames, passwords, and emails (we will define this later).
If the webpage w does not require any verifiable information,
we consider it benign (line 8).

Otherwise, we identify the submission button on the web-
page (line 9) and repeatedly input randomly generated fake
account information (line 12) to observe whether the web-
page response satisfies the credential verifiability invariant
or evasion intention invariant (lines 13-16). We perform this
observation for k times to minimize the potential for acciden-
tal inconsistent responses from the webpage. If the response
satisfies the evasion intention invariant (i.e., the webpage redi-
rects to a different domain with the same brand intention),
we report w as phishing with the explanation as “detecting
evasion of original domain” (lines 13-14). If the response
satisfies the credential verifiability invariant (i.e., the web-
page can proceed when provided with fake credentials), we
report w as phishing with the explanation as “cannot verify
fake user credentials” (lines 15-16). Next, we explain how we
implement our webpage interaction primitives.

Credential Requiring Detection and Webpage Transition
(lines 1-2) In this work, we adopt the approach proposed
by Liu et al. [43] in their PhishIntention work. They use
a deep learning classifier to determine whether a webpage
requires user credentials and an object detector to identify
links that could potentially lead to a credential-requiring web-
page. Since their approach has shown to be effective, we build
our DynaPhish system based on their contribution, instead of
proposing a new one.

Input Identification (line 5) and Verifiable Input Recogni-
tion (line 6) To identify inputs on webpages, we compile
all input-taking HTML tags specified in the HTML markup
language [12] as potential inputs. We then empirically define
29 types of account information, including usernames, user
IDs, emails, credit card information, bank account details, ad-
dresses, phone numbers, and more [31]. For more information,
readers can refer to our DynaPhish website [5]. Generally, we
consider a webpage suspicious of phishing if it cannot verify
a fake credential. Our recognition of verifiable information
involves two steps: extraction and matching.

• Extraction: To extract verifiable information from a given
input i on the webpage w, we use a hybrid approach of
HTML heuristics and computer vision techniques. The
HTML heuristics is designed for efficiency and involves
searching for input tag attributes such as placeholder, value,
type, and class, with predefined account types. The com-
puter vision technique is designed for robustness against
HTML code obfuscation and uses OCR to detect text in
the surrounding areas of the inputs. As a result, input i is
associated with a text label (e.g., “username”).

• Matching: We use a fuzz-matching strategy [55] to match
the extracted text (e.g., “user name”) with our predefined
account information descriptions (e.g., “username”). The
fuzz-matching strategy is widely used in search engine
solutions to retrieve relevant webpages based on user input.
Given a predefined account type acct and the extracted text
l, we transform them into case-insensitive strings (acc′t and
l′) and consider them matched if (1) l′ has the minimum
Levenshtein distance [13] with acc′t compared to the other
account types in the list and (2) their Levenshtein distance
is smaller than a predefined threshold thd .

Technically, we use the state-of-the-art fake credential gen-
eration tool, Faker [6], to fill in the detected inputs on web-
pages.

Submission Button Detection (line 9) We locate the form
submission button by training an object detector. We manually
labelled the submission buttons on 1495 webpage screenshots
and train an object detector to recognize the most likely can-
didate buttons. We use Faster R-CNN architecture [53] for

designing the object detector and apply Step-ReLU [42, 43]
in the model to defend against the potential adversarial at-
tacks [62].

Evaluating Credential Verifiability (line 15) To conser-
vatively report phishing alarm, we define that the webpage
cannot verify the credential after we feed it with fake cre-
dentials if (1) any of the submitted verifiable credentials are
successfully sent in the network requests and (2) the webpage
proceeds to a new page without prompting for the same verifi-
able credentials and (3) no alarm is raised for the use of fake
credentials.

4 Experiment Overview

4.1 Research Questions

Our evaluation consist of close-world experiments (RQ1-
RQ4) and an open-world experiment (RQ5) to answer the
following research questions:

• RQ1 (Overall Effectiveness): What is the overall effec-
tiveness and efficiency of DynaPhish, comparing to the
state-of-the-art approaches?

• RQ2 (Ablation Study): What is the component-wise con-
tribution (i.e., Brand Knowledge Expansion and Webpage
Interaction module) on our phishing kit dataset?

• RQ3 (Knowledge Expansion): Whether the included ref-
erences are accurate and complete, given a large-scale
dataset? Whether DynaPhish can deal with the domain vari-
ants and logo variants well?

• RQ4 (Adversarial Attacks): What is the robustness of the
DynaPhish against adversarial attacks?

• RQ5 (Effectiveness in the Wild): What is the performance
of DynaPhish to enhance state-of-the-art reference-based
detectors on phishing webpages in the wild?

4.2 Datasets

We prepare the following datasets in the experiments:
Closed-world Dynamic Dataset. In the dynamic dataset,
each phishing/benign website is viewable and interactable
to evaluate the dynamic features of DynaPhish, such as the
Webpage Interaction module. We run 6344 phishing kits on
an isolated virtual machine. Section 4.4 further explains how
we construct the phishing kits. Furthermore, we collected a
comparable number (6309) of top Alexa webpages. We used
this dataset to evaluate the overall effectiveness (RQ1), the
ablation study (RQ2), and the adversarial attacks (RQ4).

Closed-world Static Dataset. In the static dataset, we have
the webpage screenshots and URLs from the benchmark pub-
lished by [42], consisting of 29,496 phishing and 30,649 be-
nign URLs along with static screenshots. Note that, many of
the phishing URLs in this dataset are dead, we track their
historical appearance by their screenshots. The larger-scale
dataset allows us to evaluate the features of DynaPhish such
as the Knowledge Expansion module (RQ3).
Wild-study Dataset. We collect fresh websites from Cert-
Stream [4], which provides us with websites that have newly
issued or updated TLS certificates. We crawl 3,000 random
fresh websites from CertStream every day. Our wild-study
was conducted over 33 days, resulting in a dataset of 99,000
webpages. We used this dataset to evaluate RQ3 (i.e., the
performance of DynaPhish on domain and logo variants) and
RQ5.

4.3 Performance Metrics

Phishing Detection Effectiveness. The effectiveness of phish-
ing detection is evaluated in RQ1 and RQ2 using precision
and recall metrics. Given n ground-truth phishing webpages,
a phishing detector reports m webpages as phishing, out of
which k are true phishing webpages. We calculate recall as k

n
and precision as k

m .
Runtime Efficiency. Efficiency is evaluated using the rolling
median runtime. The median runtime is calculated over every
50 folders processed, generating a smooth plot of runtime
over the number of folders scanned.
Knowledge Expansion Effectiveness. We measure the preci-
sion and recall for the effectiveness of Knowledge Expansion.
Given n ground-truth references to be expanded, if we include
m references in the reference list, out of which k references
are accurate, we measure recall as k

n and precision as k
m .

Logo/Domain Variant Detection Effectiveness. We measure
the precision and recall to report an individual logo or domain
has variants under its brand. Given n logos/domains has its
variants, if we report m logos/domains has variants, out of
which k reports are correct, we have the recall as k

n and the
precision as k

m . Note that, we focus on the precision over the
recall in the experiment, considering the consequence of false
positive is more severe.
Adversarial Robustness. We measure adversarial robustness
by evaluating the performance drop of a functionality under
adversarial attacks. For deep learning tasks, such as submis-
sion button detection on webpage screenshots, we measure
performance drop using the gradient-based adversarial at-
tack method and Mean Average Precision (MAP), a widely
adopted metric in the object detection community [14]. For
the Webpage Interaction module, which detects verifiable
inputs via HTML analysis, we measure performance drop
under HTML obfuscation, using classification accuracy as the
metric.

Phishing Detection Effectiveness (Wild Study). We mea-
sure the recall and precision of phishing detection in the
closed-world experiment. Additionally, we compare the num-
ber of detected real-world phishing webpages among different
reference-based phishing detectors.

4.4 DynaPD Dataset Construction

One challenge in evaluating the interaction nature of Dy-
naPhish is that real-world phishing webpages typically expire
within a week [49]. To address this challenge, we constructed
the DynaPD dataset, as illustrated in Figure 5. This dataset
consists of a container hosting 6344 live and de-weaponized
phishing kits.

Definition. A phishing kit comprises all the scripts and re-
sources needed to deploy a phishing website and harvest
stolen credentials [28]. In our dataset, the scripts are predomi-
nantly written in PHP, HTML, and JavaScript.

Liveness. As shown in Figure 5, we semi-automatically con-
structed the DynaPD by gathering data from two sources: the
Miteru service [15] and a subscribed OpenPhish service [22].
On average, we obtained 30 phishing kits per day. Since the
phishing kits are typically written in PHP, we built a virtual
machine with an Apache server (XAMPP) to host each kit.
Over a 10-month period (from February 2022 to December
2022), we collected a total of 8328 phishing kits, of which
6344 were already interactable or manually repaired to be
interactable. These phishing kits cover 567 distinct brands.

De-weaponization. To create a safe phishing dataset for the
academic community, we took steps to prevent dataset users’
credentials from being sent to phishers. Our analysis showed
that 72.11% of phishing kits send credentials via email, 8.66%
log the credentials locally, 4.33% use Telegram to send cre-
dentials, and 14.91% use both email and Telegram. To de-
weaponize each phishing kit, we: (1) replace Telegram-based
credential-sending code with email-based credential-sending
code and (2) replace the attacker’s email with an email ad-
dress configurable by the dataset user. We used a taint-based
approach to achieve this. Specifically, we submitted randomly
generated information to the phishing webpages, decrypted
and monitored the traffic of request content, investigated and
modified parts of the source code of the phishing kits until no
traffic containing such content was observed, and then modi-
fied the source code with the user-customized email address.
Finally, we provided a set of Selenium-based APIs for the
built dataset, including retrieving webpages, capturing screen-
shots, detecting and filling webpage forms, and more. A trial
version of the DynaPD dataset is available at [5]1.

1The DynaPD dataset is released based on registration. Thus, we can only
provide the trial version regarding anonymous requirement in the conference.

OpenPhish
Service

Miteru
Raw

Phishing
Kit

 repair

crawl

Phishing Kit

VM Container

Extracted API

de-weaponization

Figure 5: The construction and the design of DynaPD dataset

5 RQ1 (Experimental Effectiveness)

5.1 Setup
In this study, we use the closed-world interactable dataset, as
introduced in Section 4.2. We selected Phishpedia [42] and
PhishIntention [43] as our baselines, as they have achieved
state-of-the-art performance in reporting phishing webpages
in both experimental and wild settings. We enhanced these
baselines with DynaPhish, resulting in Phishpedia + Dy-
naPhish and PhishIntention + DynaPhish. We used the default
reference list published in [43], which consists of 274 refer-
ences. In our experiments on the DynaPD, 281 out of 567
brands were not included. Moreover, we set the trial threshold
k = 3 (as shown in Algorithm 3). For more details, please
refer to our website [5].

We compare the solutions (i.e., Phishpedia, PhishIntention,
Phishpedia + DynaPhish, and PhishIntention + DynaPhish)
by their phishing detection performance (as mentioned in
Section). To evaluate the potential runtime overhead of Dy-
naPhish, we simulate a practical environment where the num-
ber of benign visits is several magnitudes higher than the
number of phishing visits. In this experiment, we visit a be-
nign webpage w for m = ⌈ S

rank +1⌉ times, where rank is w’s
ranking on Alexa. We empirically set S to be 50. Each phish-
ing webpage was visited only once as phishing webpages
are typically less visited than benign webpages. Finally, we
shuffled all the visits to the benign and phishing webpages.

5.2 Results
As shown in Table 2, the four solutions were evaluated, and
the results indicate that DynaPhish significantly improves the
recall of PhishIntention and Phishpedia by 28% and 30% re-
spectively, with negligible cost to precision. In general, the
brand enhancements made by DynaPhish include many re-
gionally famous brands, such as Australia Post, Intesa San-
paolo, and Alpha Bank. For more details, please refer to our
website [5].

Figure 6 shows the running median of the runtime overhead
incurred by DynaPhish on PhishIntention and Phishpedia. Ini-
tially, DynaPhish can cause a median runtime overhead of
5.8 seconds per webpage (PhishIntention+DynaPhish) and

Figure 6: Runtime Overhead Distribution

5.3 seconds per webpage (Phishpedia+DynaPhish). As the
number of references increases, the runtime overhead gradu-
ally reduces to 0.5 seconds during webpage processing. Our
investigation revealed that the network connection causes
the most overhead. Additionally, we observed a significant
network delay when processing approximately 20% of the
webpages in our experimental environment. In consideration
of the importance of network stability, we recommend to de-
ploy DynaPhish in two separate working threads. One thread
should be dedicated to knowledge construction and expan-
sion, while the other thread should be responsible for phishing
detection. This approach will help to prevent any potential
blocking of the detection performance. Moving forward, we
conduct a thorough investigation into the underlying reasons
for the false negatives, readers can refer to our website [5] for
details.

6 RQ2: Ablation Study

Table 2 shows the performance of the Brand Knowledge Ex-
pansion module and the Webpage Interaction module in en-
hancing our reference-based phishing detector. In Table 2,
we denoted the phishing detector F enhanced with only the
Brand Knowledge Expansion module as F +BKE, and the
Webpage Interaction module only as WI. Noted that, the Web-
page Interaction module can function independently as a
phishing detector. We evaluate the performance of Phishpe-
dia, Phishpedia+BKE, Phishpedia+DynaPhish, PhishInten-
tion, PhishIntention+BKE, PhishIntention+DynaPhish, and
WI on DynaPD. Overall, the Brand Knowledge Expansion
module significantly enhances the recall of PhishIntention and
Phishpedia by 10% and 11%, respectively, with a negligible
impact on precision. For those phishing webpages where their
target brands are not expanded, our investigation shows that
the Brand Knowledge Expansion module can be affected by
brandless webpages and webpages with obsolete logos. With
the support of the Webpage Interaction module, we achieved
further performance boost in recall. Note that the Webpage
Interaction module can also function as a standalone solution,

Table 2: The performance of the Brand Knowledge Expansion
module and the Webpage Interaction module

Solution Precision Recall #Added Ref
PhishIntention 99.85% 40.98% -

PhishIntention + BKE 99.78% 50.74% (↑ 10%) 3903
PhishIntention + DynaPhish 99.84% 68.63% (↑ 28%) 3903

Phishpedia 99.86% 44.80% -
Phishpedia + BKE 98.65% 56.26% (↑ 11%) 3903

Phishpedia + DynaPhish 98.97% 74.04% (↑ 30%) 3903
WI 100.00% 43.00% -

Table 3: Knowledge Expansion Performance

Category Sub-Category Recall Precision
Benign webpages - 73% 98%

Phishing webpages Text-based logos (96.4%) 83% 100%
Non-text-based logos (3.6%) 46% 100%

with a recall of 43.00% and little impact on precision.

7 RQ3-1: Knowledge Expansion

7.1 Setup
To address RQ3, we utilized the benchmark dataset published
by [42] to evaluate two key aspects: whether both the brands
of benign webpages and the target brands of the phishing
webpages can be effectively integrated into the reference list?
We evaluate the precision and recall of the expanded brands
in benign and phishing webpages individually.

7.2 Results
Table 3 shows the overall performance of our Knowledge
Expansion module. Our popularity validation component in-
cludes 73% of the Alexa 30K webpages, with a precision of
98%. In contrast, our representation validation component
includes 83% of Phish 30K webpages with text-based logos
and 46% with non-text-based logos, with a precision of 100%.
We will further investigate the false positives and negatives
as follows:
Failure of Popularity Validation on Benign Webpages.
Our investigation has revealed two major reasons for fail-
ures in expanding brands in benign webpages. Firstly, the
benign websites in Alexa 30K can expire. For example, at the
time of our experiment, websites such as likeshuo.com and
smart-torrent.org were no longer accessible. Secondly,
we observed that some websites take longer to respond to
our visit, exceeding our predefined timeout. Consequently,
the Knowledge Expansion module is unable to extract the
necessary representations from these webpages. We suggest
that practitioners can adjust the timeout to a longer duration
if they prioritize completeness of knowledge expansion over
timeliness.

likeshuo.com
smart-torrent.org

(a) The logo detected on phishing
webpage

(b) The logo used on benign web-
page

Figure 7: Examples of Representations Matching Failures

(a) “Blue Bottle Coffee” for the
iCloud logo

(b) “Three” for the Three-UK
logo

Figure 8: Performance of Google Logo Detection service: the
iCloud and Three-UK logo are mis-reported.

Failure of Representation Validation on Phishing Web-
pages. As text-based and non-text based logos present dif-
ferent challenges in recognition, we divided the Phish30K
dataset into two categories: text-based logos (which represent
96.4% of the dataset) and non-text-based logos (which repre-
sent 3.6% of the dataset). We observed different reasons for
failures in each category. For text-based logos, the Google
Logo Detection service allowed us to capture their brand se-
mantics well. False negatives in this category were caused by
the logo version in the phishing webpage not matching that
in the benign webpage. Nevertheless, the performance of the
Google Logo Detection service decreases on non-text logos,
leading to more missed brands in Knowledge Expansion. As
shown in Figure 8, the Google Logo Detection service may
retrieve irrelevant brand names, resulting in missing some
brands such as iCloud and Three-UK. Although DynaPhish
relies on the functionalities provided by state-of-the-art phish-
ing detectors (e.g. matching two logos) and search engines
(e.g. retrieving information from a more extensive information
source), its performance is limited by their technical bottle-
necks. We will discuss these limitations and their remedies in
Section 11.

8 RQ3-2: Logo/Domain Variant Detection

8.1 Setup

We collect ground-truth domain variants from the 99K do-
mains in the wild (as mentioned in Section 4.2). Since it is
prohibitively expensive to manually investigate whether every
pair of domains is variant, we cluster the domains based on
their logo similarity reported by the logo-match implementa-
tion in PhishIntention. Then, we manually go through each
cluster and decide that there are totally 231 domain variants
distributed in 34 brands. We run DynaPhish on those 99K do-
mains to evaluate the precision and the recall of the reported
domain variants.

We run our representation validation algorithm against
the Fortune 500 [8] company list for the year 2022. In this
experiment, we evaluate the precision of the reported logo
variants. We also report the average number of logo variants
added for each brand.

8.2 Results

DynaPhish achieves the precision of 100% and the recall
of 100%, which indicates the effectiveness of our domain-
variant search solution (see Section 8.2). In the experiment,
the largest group of domain variants lies in the Vivint Smart
Home company (https://www.vivint.com/), where every au-
thorized retailer was registered under a different domain but
shared the same webpage template.

In addition, our manual investigation of the results of logo
variant expansion shows that DynaPhish achieves the preci-
sion of 100%, indicating the effectiveness of the logo-variant
search solution (see Section). Examples of logo variants are
illustrated in Figure 17.

9 RQ4: Adversarial Attacks

9.1 Setup

In the DynaPhish design, the attack surface mainly lies in (1)
the webpage screenshots which can be constructed to fool the
deep object detector in DynaPhish to report the submission
button (see Section 3.3.1) and (2) the HTML heuristics used
by DynaPhish to fill in the fake verifiable credentials. Thus,
we design two adversaries in this experiment. Note that, we
do not evaluate the attack surface of phishing detectors.

First, we used the Dense Adversary Generation (DAG)
attack [62] to generate adversarial attacks on the input screen-
shot. We used mAP (mean Average Precision) [14], a classical
performance measurement, to evaluate the object (submission
button) detection performance. We manually labeled 1867
Alexa screenshots, sampled from the interactable dataset, as
the evaluation dataset. We used 1495 screenshots for training
and 372 screenshots for testing.

Second, we generated an adversary for HTML code ob-
fuscation to compromise the HTML heuristics used by Dy-
naPhish for verifiable account information (see Section 3.3.1).
This adversary consisted of code-to-code obfuscation and
code-to-image obfuscation. While we do not guarantee that
a real-world attacker would perform similar obfuscation, our
obfuscation was designed to ensure that (1) the HTML heuris-
tics in DynaPhish were ineffective under the attack and (2) the
webpage still rendered similarly, preserving the webpage se-
mantics. For more details, readers can refer to the DynaPhish
website [5] and Appendix (Section A.4).

1:
2:<input type="text" ...
3: id="...", ...,
4: placeholder="User ID"
5:</input>

(a) Previous Version

1.<label style="...">User
ID</label>
2:<input type="text" ...
3: id="...", ...,
4:
5:</input>

(b) Obfuscated Version

Figure 9: Code-to-code Obfuscation

1:
2:<input type="text" ...
3: id="...", ...,
4: placeholder="User ID"
5:</input>

(a) Previous Version

1.<image src="userid.jpg"
...>
2:<input type="text" ...
3: id="...", ...,
4:
5:</input>

(b) Obfuscated Version

Figure 10: Code-to-image Obfuscation

9.2 Results

As shown in Table 4, the DAG attack was effective in reducing
the mAP measurement by an average of 10%. Moreover,
the Step-ReLU defense algorithm worked well to defend the
adversarial screenshots (as discussed in Section 3.3.1). Table 5
shows the overall performance of DynaPhish against HTML
obfuscation. Overall, the OCR approach complemented the
HTML heuristics well enough so that the recall was largely
preserved.

10 RQ5: Effectiveness in the Wild

10.1 Setup

We selected Phishpedia [42], PhishIntention [43], Phishpe-
dia+DynaPhish, PhishIntention+DynaPhish, and VirusTotal
[18] as the baseline reference-based phishing detectors. To
collect emerging webpages, we used CertStream [4], which
provided us with webpages that had newly issued or updated
TLS certificates.

We controlled the experiment to crawl 3K randomly fresh
websites per day to evaluate the effectiveness of different
reference-based phishing detectors. This experiment was con-
ducted for about one month (from 2022-09-02 to 2022-10-04).
As a result, 99K fresh webpages were crawled. It is important
to note that it is not realistic to achieve the exact recall rate
due to the large number of webpages. Therefore, we estimated
the precision and recall rates as follows:

We randomly selected 3K webpages and enlisted the help
of five hired interns, each with an average of 1.5 years of
cybersecurity experience, to manually label these webpages
in an isolated sandbox. If the interns did not agree on a web-
page’s phishing suspiciousness, we organized a session for

Table 4: Testing performance of submission button locator
after deep learning adversary

Testing accuracy mAP IoU 0.5:0.95 mAR IoU 0.5:0.95
Clean 0.746 0.791

After DAG attack 0.630 0.738
After DAG attack with defense 0.751 0.794

Table 5: The robustness against HTML code obfuscation

Dataset Recall Precision
Original Accuracy 43.00% 100.00%

Accuracy after Obfuscation 40.40% 100.00%

all the phishing annotators to reach a consensus. If a consen-
sus could not be reached, we discarded the webpage to be
conservative.

We take the total number of ground-truth phishing web-
pages as N, the number of reported and confirmed phishing
webpages of an individual solution i as Ni, the number of
reported phishing webpage of an individual i as Mi, the preci-
sion is calculated as Ni

Mi
and the recall is calculated as Ni

N .

10.2 Results
Quantitative Analysis Table 6 shows the overall perfor-
mance of the five solutions. In total the Knowledge Expan-
sion of DynaPhish can add over 5K brands into the reference
list, starting from the original 274 brands. The augmented
reference list generated by DynaPhish boosted its recall by
a factor of 10, without compromising its precision. In con-
trast, Phishpedia enhanced with DynaPhish showed similar
boosting performance in recall but had a slight decrease in
precision. When compared to PhishIntention, which considers
both the brand intention and the credential-taking intention,
Phishpedia reports phishing webpages only by the brand in-
tention. In this case, the growth of the reference list can lead
to more false positives, which is consistent with the discussion
in [43]. As such, we recommend to apply DynaPhish to more
advanced reference-based phishing detectors in real-world
applications. The other reasons of false positives and nega-
tives are discussed in our website [5]. Next, we report our
observed phenomenon different from that in the experimental
environment (Section 5).

Observation 1: Unconventional Phishing Targets The
huge gap of the recall between F and F + DynaPhish high-
lights the possibility of phishing campaigns targeting brands
that are not traditionally viewed as high-risk targets (such
as PayPal or Facebook). Notably, our study reveals a stark
contrast in phishing targets when compared to previous liter-
ature. As depicted in Figure 11, Cisco emerges as the most
frequently attacked brand, with other security and cryptocur-
rency companies like Sonic Wall [17] and Premint [16] also

Table 6: The performance in the wild study (Precision and
Recall are labeled on sampled 3K)

Detector Precision Recall Added References # Real Phishing
PhishIntention 1.00 0.10 - 127

Phishpedia 1.00 0.05 - 137
PhishIntention +

DynaPhish
1.00 0.71 5294 1327

Phishpedia +
DynaPhish

0.56 0.79 5294 1366

WI only 1.00 0.17 - -
VirusTotal 0.01 0.02 - 36

Figure 11: The targeted brands of discovered phishing attacks

being targeted. This underscores the potential limitations of
using a predefined reference list, which may restrict the scope
of identifying such campaigns.

Observation 2: Dynamics of Phishing Campaigns Table 7
displays the Top-3 phishing targets that were identified during
different time periods of our study, revealing the dynamic
and evolving nature of emerging phishing campaigns. In the
first five days, Microsoft was the most frequently attacked
brand, but was replaced by Cisco from Day 6. Moreover, the
second and third most targeted brands changed over time, with
Facebook and Apple (in Day 1-5) being replaced by Microsoft
and Sonic Wall subsequently from Day 6 to Day 33. It is worth
noting that Sonic Wall is a security company, which is not
typically viewed as a high-risk target. The use of DynaPhish
offers a valuable solution for obtaining a more comprehensive
understanding of the dynamics of such campaigns.

Observation 3: The contribution of Web Interaction Mod-
ule Our evaluation demonstrates that the Web Interaction
module is moderately effective in detecting phishing attempts
on DynaPD. However, when solely relying on Web Interac-
tion, our recall rate is limited to 0.17 in the wild study. This
performance gap may be attributed to the distribution shift
between DynaPD and Certstream websites. Generally, the
Webpage Interaction module is a conservative phishing de-

Table 7: The evolving campaigns during the wild study

Period Top-1 Target Top-2 Target Top-3 Target
Day 1 - 5 Microsoft Facebook Apple

Day 6 - 10 Cisco Microsoft Instagram
Day 11 - 15 Cisco Microsoft Sonic Wall
Day 16 - 20 Cisco Microsoft Sonic Wall
Day 21 - 33 Cisco Microsoft Sonic Wall

tection strategy when the brand intention is not available. It
focuses on accuracy instead of completeness, which can fur-
ther contribute to increasing the evasion costs for phishing
attackers.

Overall, DynaPhish can boost the recall of the state-of-the-
art phishing detectors in practice. In addition, we empirically
observe that the dynamic phishing campaigns are aiming for
brands which are not the conventional phishing targets.

11 Limitations and Future Work

Although we have demonstrated that DynaPhish can boost
the performance of state-of-the-art reference-based phishing
detectors, we acknowledge a few limitations of DynaPhish
that highlight areas for the future work.

Performance Limitation and Restriction As demon-
strated in our experiments, the boosting performance of Dy-
naPhish is still largely restricted by (1) the information re-
trieval performance of the search engine and (2) the perfor-
mance of some basic functionalities, such as representation
extraction (rep(.)) and representation matching (match(., .)).
In essence, DynaPhish is a framework that systematically in-
tegrates the search engine and the components of a reference-
based phishing detector, with their functionalities serving as
building blocks. The stronger these blocks, the more effec-
tive DynaPhish can be in expanding brand knowledge. How-
ever, given the false positives and negatives observed in the
experiment, we foresee that the following solutions can be
developed:

• A logo-based search engine: To the best of our knowledge,
the Google service still leads the performance of general in-
formation retrieval, especially in terms of text. However, it
can still miss expanding some logo information, especially
for non-text logos. Therefore, we foresee the development
of a logo-based search engine that can overcome these chal-
lenges. This can be achieved by using a crawler to search for
diverse logos on the internet and constructing a logo-based
knowledge graph. With this approach, the logo-retrieval
problem can be addressed locally, fundamentally mitigating
the information retrieval challenges of the Google service
and improving the response time of on-deployment phish-
ing detectors.

• An evolving logo detection/matching model: Although
some basic functions, such as representation extraction and
representation matching, are initially designed to accom-
plish reference-based phishing detectors, such as Phishpe-
dia and PhishIntention, they need to be further evolved to
support DynaPhish. Specifically, the deep learning models
used in DynaPhish, such as the object detectors for detecting
logos and the Siamese models for comparing logos, require
further improvement. Therefore, we foresee the need for
an on-deployment model evolution solution that can (1) ac-
tively collect more webpage screenshots where the models
do not perform well and (2) retrain the models with more
informative training samples.

• Limited Behavioural Invariant in Webpage Interaction
It is challenging to identify the phishing webpages when
their brand intention is not available. In the Webpage In-
teraction module, we identify two behaviourial invariants:
credential verifiability and evasive redirection. The solution
is designed to be conservative, i.e., accurate but not com-
plete, when the brand intention is not available. We foresee
that the Webpage Interaction module can play a role to in-
crease the cost of constructing new phishing kits. Moreover,
our interaction does not address the advanced cloaking tech-
niques [26, 37, 45]. With client-side cloaking (Figure 12),
phishing can bypass many anti-phishing solutions [47, 48].

In future work, we plan to develop a more robust
behavioural-based phishing detection approach by extract-
ing implicit brand intention from webpage layouts. Addi-
tionally, we aim to further develop the Webpage Interaction
module to address emerging cloaking techniques adopted
by phishing attackers.

12 Related Work

Phishing Detection Over the years, phishing detection
has undergone several transformations. Initially, it relied on
blacklist-based approaches such as Microsoft SmartScreen
[24], OpenPhish [22], and Google Safe Browsing [23]. Google
Safe Browsing, for instance, accumulates malicious URLs
from user reports and crawlers, making it a popular rep-
resentative of blacklist-based approaches. Alternatively, re-
searchers proposed feature-engineering based approaches
[39, 40, 44, 60, 61] that involved extracting features from
HTML code, URL, domain, and screenshot, and vectorizing
webpages for machine learning models to predict.

However, with the evolution of phishing webpages, both
the blacklist and the training phishing dataset have become
outdated. To overcome this limitation, reference-based ap-
proaches aim to identify suspicious phishing webpages where
the brand intention of a webpage does not align with its do-
main. Medvet et al. [46] and Afroz et al. [27] pioneered this
approach by proposing visual webpage representation such
as logos to report phishing webpages. With the emergence of

deep learning models, Abdelnabi et al. [25], Lin et al. [42], and
Liu et al. [43] adopted deep computer vision models to extract
brand intention more effectively. However, reference-based
detectors also require maintaining a predefined set of refer-
ences, which may become obsolete as phishing campaigns
evolve. Therefore, this work serves as a facility to expand
and update the reference list, enabling the reference-based
approach to remain effective in detecting phishing webpages.

Phishing Kits and Their Analysis The study of phishing
kits, which contain the source code for phishing websites, is
crucial in understanding how attackers prepare their phishing
campaigns. Researchers have discovered that these kits are de-
signed to be evasive in both static and dynamic ways. In terms
of static evasion, Cova et al. [30] have found that the critical
source code of phishing kits is obfuscated using base64 en-
coding. As for dynamic evasion, phishing kits often employ
cloaking techniques to evade security crawlers. For example,
they may generate random URLs [34, 47–49], detect browser
fingerprints [26, 41], detect user interactions [63], and evade
two-factor authentication [38, 58]. A systematic and compre-
hensive cloaking summarization can be referred in Zhang’s
large-scale study [63]. In addition, empirical studies are also
conducted to confirm the evasiveness of phishing websites
and investigate their life cycle [28, 35, 37, 47–49, 51, 57]. To
further advance research in this area, we are releasing a new
dataset DynaPD of de-weaponized phishing kits for the com-
munity. This dataset provides an opportunity to (1) design
new phishing detectors based on the interactable phishing
websites, (2) gain more insight into the source code of phish-
ing kits, and (3) expand the phishing kit dataset for future
research.

13 Conclusion

We present DynaPhish, a solution that enhances reference-
based phishing detectors by enabling them to efficiently con-
struct reference lists and detect phishing attempts even on
brandless websites through counterfactual interaction. Our
extensive experiments demonstrate that DynaPhish signifi-
cantly reduces false negatives compared to state-of-the-art
reference-based phishing detectors.

In the future, we intend to expand our live and interactive
phishing dataset, DynaPD, and evaluate the practical perfor-
mance of DynaPhish by deploying it in an industrial setting.

Figure 12: Client-side cloaking in DynaPD dataset

References

[1] 15 autonomous driving companies 2022.
https://explodingtopics.com/blog/
autonomous-vehicle-startups.

[2] 20 cybersecurity startups 2022.
https://explodingtopics.com/blog/
cybersecurity-startups.

[3] 50 blockchain companies 2022.
https://builtin.com/blockchain/
blockchain-companies-roundup.

[4] CertStream Service. https://certstream.calidog.
io/.

[5] DynaPhish Site. https://sites.google.com/view/
dynlaphish-website/.

[6] Faker. https://faker.readthedocs.io/en/
master/.

[7] Financial losses from phishing, infosec. https:
//resources.infosecinstitute.com/topic/
financial-losses-from-phishing/.

[8] Fortune 500. https://fortune.com/ranking/
fortune500/.

[9] Google cloud logo detection. https://cloud.google.
com/vision/docs/detecting-logos.

[10] Google Safe Browsing API. https://developers.
google.com/safe-browsing/v4.

[11] Google search. https://developers.google.com/
custom-search/v1/introduction.

[12] Html: Hypertext markup language. https://
developer.mozilla.org/en-US/docs/Web/HTML.

[13] Legenshtein distance. https://en.wikipedia.org/
wiki/Levenshtein_distance#cite_note-1.

[14] map (mean average precision) for object detection.

[15] Miteru. https://github.com/ninoseki/miteru.

[16] Premint. https://www.premint.xyz/.

[17] Sonic wall. https://www.sonicwall.com/.

[18] VirusTotal. https://www.virustotal.com/gui/.

[19] Whois. https://en.wikipedia.org/wiki/WHOIS.

[20] zphisher. https://github.com/htr-tech/
zphisher.

[21] Alexa. https://www.alexa.com/, 2020.

[22] OpenPhish. https://www.openphish.com/, October
2020.

[23] Google Safe Browsing. https://safebrowsing.
google.com, 2021.

[24] Microsoft SmartScreen. https://
docs.microsoft.com/en-us/windows/
security/threat-protection/
microsoft-defender-smartscreen, 2021.

[25] Sahar Abdelnabi, Katharina Krombholz, and Mario Fritz.
VisualPhishNet: Zero-Day Phishing Website Detection
by Visual Similarity. In Proc. ACM CCS, 2020.

[26] Bhupendra Acharya and Phani Vadrevu. {PhishPrint}:
Evading phishing detection crawlers by prior profiling.
In 30th USENIX Security Symposium (USENIX Security
21), pages 3775–3792, 2021.

[27] Sadia Afroz and Rachel Greenstadt. Phishzoo: Detect-
ing phishing websites by looking at them. In 2011 IEEE
fifth International Conf. on Semantic Computing.

[28] Hugo Bijmans, Tim Booij, Anneke Schwedersky, Aria
Nedgabat, and Rolf van Wegberg. Catching phishers
by their bait: Investigating the dutch phishing landscape
through phishing kit detection. In 30th USENIX Security
Symposium (USENIX Security 21), pages 3757–3774,
2021.

[29] Ahmet Selman Bozkir and Murat Aydos. Logosense: A
companion hog based logo detection scheme for phish-
ing web page and e-mail brand recognition. Computers
& Security, 95:101855, 2020.

[30] Marco Cova, Christopher Kruegel, and Giovanni Vigna.
There is no free phish: An analysis of “free” and live
phishing kits. WOOT, 8:1–8, 2008.

[31] Kostas Drakonakis, Sotiris Ioannidis, and Jason Polakis.
The cookie hunter: Automated black-box auditing for
web authentication and authorization flaws. In Proc.
ACM CCS, pages 1953–1970, 2020.

https://explodingtopics.com/blog/autonomous-vehicle-startups
https://explodingtopics.com/blog/autonomous-vehicle-startups
https://explodingtopics.com/blog/cybersecurity-startups
https://explodingtopics.com/blog/cybersecurity-startups
https://builtin.com/blockchain/blockchain-companies-roundup
https://builtin.com/blockchain/blockchain-companies-roundup
https://certstream.calidog.io/
https://certstream.calidog.io/
https://sites.google.com/view/dynlaphish-website/
https://sites.google.com/view/dynlaphish-website/
https://faker.readthedocs.io/en/master/
https://faker.readthedocs.io/en/master/
https://resources.infosecinstitute.com/topic/financial-losses-from-phishing/
https://resources.infosecinstitute.com/topic/financial-losses-from-phishing/
https://resources.infosecinstitute.com/topic/financial-losses-from-phishing/
https://fortune.com/ranking/fortune500/
https://fortune.com/ranking/fortune500/
https://cloud.google.com/vision/docs/detecting-logos
https://cloud.google.com/vision/docs/detecting-logos
https://developers.google.com/safe-browsing/v4
https://developers.google.com/safe-browsing/v4
https://developers.google.com/custom-search/v1/introduction
https://developers.google.com/custom-search/v1/introduction
https://developer.mozilla.org/en-US/docs/Web/HTML
https://developer.mozilla.org/en-US/docs/Web/HTML
https://en.wikipedia.org/wiki/Levenshtein_distance#cite_note-1
https://en.wikipedia.org/wiki/Levenshtein_distance#cite_note-1
https://github.com/ninoseki/miteru
https://www.premint.xyz/
https://www.sonicwall.com/
https://www.virustotal.com/gui/
https://en.wikipedia.org/wiki/WHOIS
https://github.com/htr-tech/zphisher
https://github.com/htr-tech/zphisher
https://www.alexa.com/
https://www.openphish.com/
https://safebrowsing.google.com
https://safebrowsing.google.com
https://docs.microsoft.com/en-us/windows/security/threat-protection/microsoft-defender-smartscreen
https://docs.microsoft.com/en-us/windows/security/threat-protection/microsoft-defender-smartscreen
https://docs.microsoft.com/en-us/windows/security/threat-protection/microsoft-defender-smartscreen
https://docs.microsoft.com/en-us/windows/security/threat-protection/microsoft-defender-smartscreen

[32] Anthony Y Fu, Liu Wenyin, and Xiaotie Deng. Detect-
ing phishing web pages with visual similarity assess-
ment based on earth mover’s distance (EMD). IEEE
Trans. on Dependable and Secure Computing, 2006.

[33] Sujata Garera, Niels Provos, Monica Chew, and Aviel D
Rubin. A framework for detection and measurement of
phishing attacks. In Proc. ACM workshop on Recurring
malcode, pages 1–8, 2007.

[34] Xiao Han, Nizar Kheir, and Davide Balzarotti. Phisheye:
Live monitoring of sandboxed phishing kits. In Proc.
ACM CCS, pages 1402–1413, 2016.

[35] Grant Ho, Asaf Cidon, Lior Gavish, Marco
Schweighauser, Vern Paxson, Stefan Savage, Ge-
offrey M Voelker, and David Wagner. Detecting and
characterizing lateral phishing at scale. In 28th USENIX
Security Symposium, pages 1273–1290, 2019.

[36] Grant Ho, Aashish Sharma, Mobin Javed, Vern Paxson,
and David Wagner. Detecting credential spearphishing
in enterprise settings. In 26th USENIX Security Sympo-
sium, pages 469–485, 2017.

[37] Luca Invernizzi, Kurt Thomas, Alexandros Kaprave-
los, Oxana Comanescu, Jean-Michel Picod, and Elie
Bursztein. Cloak of visibility: Detecting when machines
browse a different web. In Proc. IEEE S&P, 2016.

[38] Brian Kondracki, Babak Amin Azad, Oleksii Starov, and
Nick Nikiforakis. Catching transparent phish: Analyz-
ing and detecting mitm phishing toolkits. In Proceed-
ings of the 2021 ACM SIGSAC Conference on Computer
and Communications Security, pages 36–50, 2021.

[39] Hung Le, Quang Pham, Doyen Sahoo, and Steven CH
Hoi. URLNet: Learning a URL representation with deep
learning for malicious URL detection. arXiv preprint
arXiv:1802.03162, 2018.

[40] Yukun Li, Zhenguo Yang, Xu Chen, Huaping Yuan, and
Wenyin Liu. A stacking model using URL and HTML
features for phishing webpage detection. Future Gener-
ation Computer Systems, 94:27–39, 2019.

[41] Xu Lin, Panagiotis Ilia, Saumya Solanki, and Jason Po-
lakis. Phish in sheep’s clothing: Exploring the authenti-
cation pitfalls of browser fingerprinting. In 31st USENIX
Security Symposium (USENIX Security 22), pages 1651–
1668, 2022.

[42] Yun Lin, Ruofan Liu, Dinil Mon Divakaran, Jun Yang
Ng, Qing Zhou Chan, Yiwen Lu, Yuxuan Si, Fan Zhang,
and Jin Song Dong. Phishpedia: A hybrid deep learning
based approach to visually identify phishing webpages.
In 30th USENIX Security Symposium, 2021.

[43] Ruofan Liu, Yun Lin, Xianglin Yang, Siang Hwee Ng,
Dinil Mon Divakaran, and Jin Song Dong. Inferring
phishing intention via webpage appearance and dynam-
ics: A deep vision based approach. In 30th {USENIX}
Security Symposium ({USENIX} Security 21), 2022.

[44] Christian Ludl, Sean McAllister, Engin Kirda, and
Christopher Kruegel. On the effectiveness of techniques
to detect phishing sites. In International Conf. on De-
tection of Intrusions and Malware, and Vulnerability
Assessment, pages 20–39. Springer, 2007.

[45] Sourena Maroofi, Maciej Korczyński, and Andrzej Duda.
Are you human? resilience of phishing detection to eva-
sion techniques based on human verification. In Pro-
ceedings of the ACM Internet Measurement Conference,
pages 78–86, 2020.

[46] Eric Medvet, Engin Kirda, and Christopher Kruegel.
Visual-similarity-based phishing detection. In Proc. Se-
cureComm, pages 1–6, 2008.

[47] Adam Oest, Yeganeh Safaei, Adam Doupé, Gail-Joon
Ahn, Brad Wardman, and Kevin Tyers. Phishfarm: A
scalable framework for measuring the effectiveness of
evasion techniques against browser phishing blacklists.
In Proc. IEEE S&P, 2019.

[48] Adam Oest, Yeganeh Safaei, Penghui Zhang, Brad
Wardman, Kevin Tyers, Yan Shoshitaishvili, and Adam
Doupé. Phishtime: Continuous longitudinal measure-
ment of the effectiveness of anti-phishing blacklists. In
29th USENIX Security Symposium, 2020.

[49] Adam Oest, Penghui Zhang, Brad Wardman, Eric Nunes,
Jakub Burgis, Ali Zand, Kurt Thomas, Adam Doupé, and
Gail-Joon Ahn. Sunrise to sunset: Analyzing the end-
to-end life cycle and effectiveness of phishing attacks at
scale. In 29th USENIX Security Symposium, 2020.

[50] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry
Winograd. The pagerank citation ranking: Bringing
order to the web. Technical report, Stanford InfoLab,
1999.

[51] Peng Peng, Chao Xu, Luke Quinn, Hang Hu, Bimal
Viswanath, and Gang Wang. What happens after you
leak your password: Understanding credential sharing
on phishing sites. In Proceedings of the 2019 ACM Asia
Conference on Computer and Communications Security,
pages 181–192, 2019.

[52] James W Ragucci and Stefan A Robila. Societal aspects
of phishing. In 2006 IEEE International Symposium on
Technology and Society, pages 1–5. IEEE, 2006.

[53] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian
Sun. Faster R-CNN: Towards real-time object detec-
tion with region proposal networks. arXiv preprint
arXiv:1506.01497, 2015.

[54] Ponemon Institute reports. The ponemon 2021 cost of
phishing study, 2021.

[55] Peter H Sellers. The theory and computation of evolu-
tionary distances: pattern recognition. Journal of algo-
rithms, 1(4):359–373, 1980.

[56] Kurt Thomas, Frank Li, Ali Zand, Jacob Barrett, Juri
Ranieri, Luca Invernizzi, Yarik Markov, Oxana Co-
manescu, Vijay Eranti, Angelika Moscicki, et al. Data
breaches, phishing, or malware? understanding the risks
of stolen credentials. In Proceedings of the 2017 ACM
SIGSAC conference on computer and communications
security, pages 1421–1434, 2017.

[57] Ke Tian, Steve TK Jan, Hang Hu, Danfeng Yao, and
Gang Wang. Needle in a haystack: Tracking down elite
phishing domains in the wild. In Proc. ACM IMC, 2018.

[58] Enis Ulqinaku, Hala Assal, AbdelRahman Abdou, Sonia
Chiasson, and Srdjan Capkun. Is real-time phishing
eliminated with {FIDO}? social engineering downgrade
attacks against {FIDO} protocols. In 30th USENIX
Security Symposium (USENIX Security 21), pages 3811–
3828, 2021.

[59] Cisco Umbrella. Cybersecurity threat trends: phishing,
crypto top the list, 2021.

[60] Rakesh Verma and Keith Dyer. On the character of
phishing urls: Accurate and robust statistical learning
classifiers. In Proc. ACM Conf. on Data and Application
Security and Privacy, 2015.

[61] Guang Xiang, Jason Hong, Carolyn P Rose, and Lorrie
Cranor. Cantina+ a feature-rich machine learning frame-
work for detecting phishing web sites. ACM Trans. on
Information and System Security (TISSEC), 14(2):1–28,
2011.

[62] Cihang Xie, Jianyu Wang, Zhishuai Zhang, Yuyin Zhou,
Lingxi Xie, and Alan Yuille. Adversarial examples for
semantic segmentation and object detection. In Proc.
IEEE ICCV, pages 1369–1378, 2017.

[63] Penghui Zhang, Adam Oest, Haehyun Cho, Zhibo Sun,
RC Johnson, Brad Wardman, Shaown Sarker, Alexan-
dros Kapravelos, Tiffany Bao, Ruoyu Wang, et al. Crawl-
phish: Large-scale analysis of client-side cloaking tech-
niques in phishing. In Proc. IEEE S&P, 2021.

Figure 13: A brandless webpage with fake-information-
verification capability

A Appendix

A.1 Runtime Configuration

Choice of hyper-parameters In Table 1, the threshold for
representation matching follows the configurations of [42]
and [43], which is set to 0.87. For Algorithm 1, we set the
retrieval limit k to 10, which is the default number of rec-
ommendations per page for Google search. We set the thlife
to 3 months. The retrieval limit k for Google Image Search
(Section 8.2) is also set to 10. Regarding Algorithm 3, the trail
threshold k is set to 3 for the experimental dataset, and we
reduce it to 1 in the wild study for efficiency considerations.
The threshold thd for Fuzz Matching is set to 1, meaning that
we tolerate the OCR to predict only one character incorrectly.

Hardware configuration All experiments are done on an
Ubuntu 20.04.3 LTS server with NVIDIA RTX A4000 GPU.

A.2 False Negatives in Experimental Dataset

Credential-Verifiable Brandless Phishing DynaPhish can-
not mitigate the false negatives incurred by the brandless
phishing webpages with the fake-information-verification ca-
pability. Figure 13 shows an example. Its brandless nature
makes the knowledge expansion function ineffective. More-
over, the webpage reports an error message such that we
cannot decide whether our randomly generated credential is
verified or not. As a result, we conservatively report it as non-
phishing. This is our limitation by design as we need to con-
servatively avoid false positives. However, such a brandless
phishing webpage makes the users more confused to provide
credentials, which makes the phishing attack inefficient.

Obsolete Logo in Phishing We observe that some phish-
ing webpages can use obsolete logos which makes our rep-
resentation validation (see Section 3.2.3) ineffective. Fig-
ure 14 shows an example where the phishing webpage uses
an obsolete logo of America First, a loan company in the
United States but not that famous globally. Our representa-
tion validation technique extracts the description of “America
First” from the logo and retrieves the legitimate domain (i.e.,
https://www.amerfirst.org/) accordingly. However, the logo of
the company has been updated (see Figure 15), the mismatch
makes us not raise an alarm.

Figure 14: A phishing webpage using obsolete logo

Figure 15: The up-to-date webpage of American First com-
pany (https://www.amerfirst.org/)

This false negative lies in that DynaPhish only expand the
current brand knowledge. A remedy is that we run DynaPhish
for a long time, and record each version of the updated logo
as the historical brand knowledge. We will implement this
feature in our future releases.

Cloaking in Phishing DynaPD dataset contains a number
of phishing kits with cloaking techniques, which can
incur false negatives. The phishing webpages in DynaPD
can adopt both the client-side cloaking and server-side
cloaking [63]. The webpages adopting client-side cloaking
can use a CAPTCHA to block the automation of DynaPhish,
preventing phishing detectors (e.g., PhishIntention) from
recognizing its credential-taking input. The webpages adopt-
ing server-side can render different webpage appearances
(e.g., a blank page) given different browser agents, client
operation systems, and IP addresses. Since we do not design
DynaPhish to address the cloaking problem, we leave such a
fix in our future work. We foresee that release of DynaPD
provides a convenient facility to study phishing webpages in
the community. Readers can refer to our website [5] for more
examples of cloaking webpages in DynaPD.

Finally, the false positives are largely due to the inherent
false positive of phishing detectors such as recognizing ad-
vertisement icons as logos. More examples are available at

DynaPhish website [5].
A.3 More Experimental Examples

We show some of the false positive cases found on our exper-
imental 6309 benign websites. The major reason is that the
logo detector in current reference-based solutions may report
irrelevant logo as the identity logo (See Figure 18).

A.4 HTML Obfuscation Examples

Figure 16 shows the rendered webpage before and after
HTML obfuscation. They exhibit minor differences from their
appearance.

Figure 16: Webpage before (top) v.s. after (bottom) HTML
obfuscation

Figure 17: Logo variants of Fortune 500 companies

Figure 18: A FP benign website: https://www.ammonnews.
net/contact-us. The logo inside the embedded advertise-
ment is matched to the "Windsor Brokers" brand.

https://www.amerfirst.org/
https://www.ammonnews.net/contact-us
https://www.ammonnews.net/contact-us

	Introduction
	Threat Model
	Approach
	Overview
	Brand Knowledge Expansion
	Popularity as Benignity
	Popular Benign Hypothesis (H1)
	Phishing Hypothesis (H2)
	Adaptation to Logo and Domain Variants
	Adversary and Maintenance

	Webpage Interaction
	Technical Design

	Experiment Overview
	Research Questions
	Datasets
	Performance Metrics
	DynaPD Dataset Construction

	RQ1 (Experimental Effectiveness)
	Setup
	Results

	RQ2: Ablation Study
	RQ3-1: Knowledge Expansion
	Setup
	Results

	RQ3-2: Logo/Domain Variant Detection
	Setup
	Results

	RQ4: Adversarial Attacks
	Setup
	Results

	RQ5: Effectiveness in the Wild
	Setup
	Results

	Limitations and Future Work
	Related Work
	Conclusion
	Appendix
	Runtime Configuration
	False Negatives in Experimental Dataset
	More Experimental Examples
	HTML Obfuscation Examples

