
Feedback-Based Debugging

Yun Lin1, Jun Sun2, Yinxing Xue3, Yang Liu3, and Jinsong Dong1

1School of Computing, National University of Singapore, Singapore, 2Singapore University of Technology and

Design, Singapore, 3School of Computer Engineering, Nanyang Technological University, Singapore

Abstract—Software debugging has long been regarded as a
time and effort consuming task. In the process of debugging,
developers usually need to manually inspect many program steps
to see whether they deviate from their intended behaviors. Given
that intended behaviors usually exist nowhere but in human
mind, the automation of debugging turns out to be extremely
hard, if not impossible.
In this work, we propose a feedback-based debugging ap-

proach, which (1) builds on light-weight human feedbacks on a
buggy program and (2) regards the feedbacks as partial program
specification to infer suspicious steps of the buggy execution.
Given a buggy program, we record its execution trace and allow
developers to provide light-weight feedback on trace steps. Based
on the feedbacks, we recommend suspicious steps on the trace.
Moreover, our approach can further learn and approximate bug-
free paths, which helps reduce required feedbacks to expedite
the debugging process. We conduct an experiment to evaluate
our approach with simulated feedbacks on 3409 mutated bugs
across 3 open source projects. The results show that our feedback-
based approach can detect 92.8% of the bugs and 65% of the
detected bugs require less than 20 feedbacks. In addition, we
implement our proof-of-concept tool, Microbat, and conduct a
user study involving 16 participants on 3 debugging tasks. The
results show that, compared to the participants using the baseline
tool, Whyline, the ones using Microbat can spend on average
55.8% less time to locate the bugs.

I. INTRODUCTION

Software debugging is often regarded as one of the most

time-consuming tasks in software development and mainte-

nance [13], [16]. Given an observable fault, developers usually

need to start with the fault-revealing code, speculate where the

bugs are, and inspect the code line by line (or sometimes step

by step) with the intended code specification in mind. When

the code gets complicated, such a manual process of debugging

inevitably demands huge amount of time and mental efforts.

Researchers have proposed a lot of techniques for automa-

tion of software debugging, such as spectrum-based fault

localization [9], [10], [30], [32], [33], delta-debugging [15],

[18], [25], [28], [36], and dynamic trace recording [12], [21],

[24], [26], [27], [31], [35]. Spectrum-based fault localization

regards test cases as executable requirement. Given a set of

test cases, it quantifies the suspiciousness of source code

lines by comparing the code coverage of passed or failed test

cases. Delta-debugging analyzes differences between passed

and failed test cases, such as test inputs and running program

states, so as to simplify the test inputs [36], [38] and isolate

root cause variable of bug [37]. However, in the process of

development, developers usually lack sufficient passed test

cases [14] to apply or take full advantage of these techniques.

Some dynamic trace recording techniques, such as omniscient

debugging [12], [26], can record the execution trace for a

single run and allow developers to trace back and analyze

the faults. Nevertheless, when the trace length gets long

(especially caused by loops), the effort for stepwise checking

becomes overwhelming.

In this paper, we propose a tool-supported and feedback-

based debugging approach, which requires only one failed test

case and aims to reveal the root-cause step in the execution.

Our rationale lies in the observation that, the specification

of detailed code usually exists nowhere but in human mind.

Therefore, we leverage light-weight user feedback as “partial

specification” to feed the debugger so that it can recommend

suspicious steps. Given a buggy program, we first build a trace

model which records the execution trace and captures causality

relations (i.e., data/control dominance relation) among the

steps. On each trace step, we allow the developers to provide

four types of feedback (i.e., correct, wrong variable value,

wrong path, and unclear). Our approach then takes the feed-

back and recommends suspicious steps based on causality

relation among trace steps. After collecting a number of

feedbacks, our approach begins to learn and approximate

bug-free paths on trace, which helps reduce the number of

feedbacks to expedite the debugging process. This iterative

process starts with a user feedback on a fault-revealing trace

step and finishes when the root-cause step is recommended.

We implement our approach as an Eclipse plugin, Microbat
(A demo video of Microbat is available at [4]). We first

conduct a simulation experiment by using Microbat to find

3409 mutated bugs with simulated feedbacks on three open

source projects. The results show that Microbat is able to

detect 92.8% of the mutated bugs and 65% of detected bugs

require less than 20 feedbacks. In addition, we conduct a

user study involving 16 participants on 3 real-world bugs.

The result shows that, compared to the participants using the

baseline tool Whyline [11], the ones using Microbat can spend
on average 55.8% less time to locate the bugs.

This paper makes the following contributions: 1) We pro-

pose a feedback-based debugging approach, which incorpo-

rates four types of feedback to recommend suspicious steps.

2) We develop Microbat tool for the practical use of our

feedback debugging approach; 3) We conduct both simulation

experiment and user study to evaluate our approach and tool.

The results show that Microbat is both effective and practical.
The rest of the paper is structured as follows. Section II

presents a motivating example. Section III describes our ap-

proach. Section IV presents our tool Microbat. Section V eval-

uates our approach with a simulation experiment. Section VI

shows our user study on real-world bugs. Section VII reviews

2017 IEEE/ACM 39th International Conference on Software Engineering

 

DOI 10.1109/ICSE.2017.43

392

2017 IEEE/ACM 39th International Conference on Software Engineering

1558-1225/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE.2017.43

393



TABLE I
DEBUGGING CODE EXAMPLE

1 public int calculate ( String expr ){
2 int brktStartIdx = −1;
3 while ( containsBracket ( expr ) ){
4 char [ ] l i s t = expr . toCharArray ( ) ;
5 for ( int i =0; i<l i s t . length ; i++){
6 i f (ch == ’ ( ’ )
7 brktStartIdx = i ;
8 else i f (ch == ’ ) ’ ){
9 String simpleExpr = expr . substring ( brktStartIdx+1, i ) ;
10 int value = evaluateSimpleExpr ( expr ) ;
11 String beforeExpr = expr . substring (0 , brktStartIdx ) ;
12 String afterExpr = ( i >= expr . length ( ) ) ? ””
13 : expr . substring ( i + 1 , expr . length ( ) ) ;
14 expr = beforeExpr + value + afterExpr ;
15 break ;
16 }
17 }
18 }
19 int resu l t = evaluateSimpleExpr ( expr ) ;
20 return resu l t ;
21 }

related work. Section VIII concludes the paper.

II. MOTIVATING EXAMPLE

Table I shows our motivating example, which is adopted

from a code training website [6]. Given a valid algorithmic ex-

pression consisting of integers, brackets, or plus/minus signs,

e.g., “1-((1+2)-1)”, this program should compute its correct

value. Overall, the program parses the expression by iteratively

replacing the expression inside the most inner pair of brackets

with its value (line 9–15). For example, the expression “1-

((1+2)-1)” will be iteratively reduced into expressions “1-

(3-1)” and “1-2”. Finally, it will be evaluated to a number

returned as the result (line 19). In our example, however,

given the complicated expression of “(((1+((1+2)+(2-1))-(1-

3))+1)+1)+1”, it returns a wrong value of 6 instead of the

correct value of 10.

With a traditional debugger, developers usually need to set

a number of breakpoints for tracking down the bug. However,

they will have to answer some following questions.

(1) Where to set breakpoints? In our example, given that

the result variable in line 20 is wrong, every statement possibly
influencing it is suspicious, which makes almost every line in

Table I as a potential breakpoint.

(2) How many breakpoints are appropriate? Too many

breakpoints may suspend the debugging execution when un-

necessary. However, any miss of a breakpoint may cause the

execution suspended after the bug has already occurred, which

requires the developer to re-run the program from the very

beginning.

(3) How to avoid over inspection effort caused by
loop? When the breakpoints are set inside a (nested) loop,

developers have to manually inspect variable values each time

a breakpoint is reached, e.g., a breakpoint set on line 11 in

Table I. With the number of iterations increases, the effort of

inspecting variable values soars dramatically.

In this work, we propose Microbat to address the above

issues. For the case in Table I, Microbat first generates the
execution trace by a single run and records all the read or

written variables and their values in each trace step. Given the

visualized trace (see Section IV), developers are able to start

debugging in a backward way. Specifically, developers can

start from the very end of the trace where the fault is observed,

and provide his feedback on this step, such as which variable

in this step is with wrong value, or whether this step should

be executed, then Microbat is able to recommend certain step
responsible for its cause.

In our example, the developer can first observe the program

state in the step running into line 20 in Table I, where the result
variable has the wrong value of 6 instead of the expected 10.

Thus, he can select this variable on this step, indicating its

wrong value as feedback, and ask Microbat to recommend

a suspicious step for further inspection. Using the feedback,

Microbat recommends a step by (1) simple causality analysis,
(2) bug-free path inference, and (3) clarity guidance.

Simple Causality Analysis. Simple causality analysis aims
to parse the dynamic data/control dominance relation between

steps to alleviate the burden of setting breakpoints. In above

case, Microbat first recommends the most recent step writing

the result variable (data dominance), i.e., the step running into
line 19. On this step, it reads a variable expr of value “5+1”
and writes the variable result of value 6.
Given that “5+1” equals 6 and the value of the written

variable result has been indicated as wrong, the read expr
variable must be wrong. Thus, the developer can further select

the expr variable to indicate its wrong value as feedback. With

simple causality analysis, Microbat then recommends a step

running into line 14, which writes the expr variable.
Bug-free Path Inference. Bug-free path inference aims to

reduce the inspection effort. With only above causality anal-

ysis, the developer will repeatedly inspect the steps running

into line 14 and line 10 in every iteration. In the worst case, he

would need to go through all the iterations if the bug happens

at the very beginning of the execution.

(((1 + ((1 + 2) + (2 - 1)) - (1 - 3)) + 1) + 1) + 1

① ② 

③ 

④ 

⑤ 

⑥ 

⑦ 

⑧ 

⑨ 
Final Result

Fig. 1. Execution of Example Program

Figure 1 shows the 9 iterations along with their execu-

tion order when parsing the expression “(((1+((1+2)+(2-1))-

(1-3))+1)+1)+1”. Since the developer inspects the variables

in a backward way, he will first give wrong-variable-value

feedback on the 9th and 8th iteration sequentially. Microbat
then approximates some possible bug-free paths along the loop

trace. In this case, Microbat can skip the 6th and 7th iteration,
and recommend a step in the 5th iteration. The rationale is

as follows. Based on developer’s feedback, the bug does not

occur in the 8th or 9th iteration. In addition, Microbat finds
that the cases in 6th–9th iteration are similar in that they all

parse the addition of two positive integers, for example “5+1”

in 9th iteration, “4+1” in the 8th iteration. Therefore, Microbat
approximates that the bug may not happen in the 6th or 7th

393394



iteration either. Hence, Microbat stops in the 5th iteration as

the case of a positive integer (4) minus a negative integer (-2)

has never been encountered.
The developer now inspects a step running into line 10 in

Table I, in which the read expr is “4- -2” while the written

value of value variable is 2. Then, the developer can select

the returned variable from evaluateSimpleExpr() method so

that Microbat can further conduct simple causality analysis

inside the method invocation.
Clarity Guidance. In some cases, developers could get lost

when inspecting the correctness of program state. Microbat
enables the developers to provide an unclear feedback, then

Microbat will try to suggest its context step such as method

invocation or loop head (i.e., the step starting a loop iteration).

Suppose the developer cannot make sure the correctness of

a step s running into line 14, he can provide the unclear
feedback so that Microbat will recommend its loop head step

running into line 5 (by one unclear feedback) or line 3 (by two

unclear feedbacks). By this means, he can be aware of the

context information such as (1) which iteration of Figure 1

is s located in and (2) what is the reduced expression at

the beginning of this iteration. With feedbacks provided on

context steps, Microbat manages to present bigger picture and
gradually guides the developer back to understand the step he

gets lost at the first place.

III. APPROACH

Given a trace of steps, our approach aims to find the root-

cause step which deviates from developer’s expectation and

eventually causes the observable fault after program execution.

A. Trace Model
Given a run of the buggy program, we can obtain a trace

consisting of a number of steps. Each step corresponds to

an executed source code line, which can define (i.e., write)

or use (i.e., read) some variables. Given a variable var, if
var is defined by step s1 while used by step s2, then we

say that step s1 data dominates s2 on var. In addition, the

variable var is called as the attributed variable of the data
dominance relation. On the other hand, given a conditional

statement con stat, if con stat is executed in step s1 while

the evaluation value of con stat (i.e., true or false) decides

the execution of step s2, then we say that step s1 control
dominates s2. Given two steps s1 and s2, if s1 control or

data dominates s2, then we say that s1 is control or data

dominator of s2, and s2 is the control or data daminatee
of s1. In addition, we say that s1 is the contextual parent of
s2 if either of following conditions happens:

• s1 starts a loop iteration l, and s2 is executed in l but not
in any nested loop iteration or method invocation in l.

• s1 starts a method invocation m and s2 is executed in m
but not in any nested method invocation or loop iteration

in m.

The contextual parent-child relation can organize our trace into

a step tree, in which the root is the entry method and the leaves
are the steps invoking no method and starting no loop iteration.

Given a step, we define its layer on step tree as its abstract
level. By default, the abstract level of the entry method is 0.

B. Recommendation Mechanism

We support four types of feedback as follows:

• Correct Step: The step is executed in correct control

flow and all the values of visible variables in this step

are correct.

• Wrong Variable Value: At least one variable in this

step is of wrong value. Once a developer provides such

feedback, he should further select the specific variables

of wrong value.

• Wrong Path: The step should not be executed.

• Unclear: The developer is not confident to make any of

the above feedback on this step.

We consider correct-step, wrong-variable-value, and wrong-

path feedback as clear feedback. We recommend a suspicious

step if the developer provides a clear feedback and recommend

a step to help understand the code if he provide an unclear

feedback. For clarity, we start illustrating our approach when

developers only provide clear feedback, then we proceed to

the case when they provide unclear feedback.

1) Overall Mechanism with Clear Feedbacks: When a

developer specifies an incorrect step by providing wrong-

variable-value or wrong-path feedback, we move forward
on trace to a suspicious previous step by data or control

dominance relation. The developer can iteratively provide

feedbacks and move forward to locate the root-cause step.

However, moving forward only by dominance relation can

be either (1) too slow so that it requires a great amount of

feedbacks or (2) too fast so that we skip the root-cause step

by a single dominance relation. Figure 2 uses a state machine

to present our overall recommending mechanism with only

clear feedbacks. The states consists of:

• Simple Casuality Analysis: we simply recommend steps

based on dominance relation.

• Bug-free Path Inference: we skip some inferred and

approximated bug-free paths to move “faster”.

• Inspect Details: when we find moving (and recommend-

ing steps) by dominance relation is too fast, we go

through steps in between a dominance relation.

Inspect 
Details

Simple Causality 
Analysis

Bug-free Path 
Inference

correct_step!pattern_matched

wrong_value|
wrong_path

pattern_matched

incorrect_approximation

correct_step

correct_approximation

Fig. 2. Overall Recommending Mechanism with Clear Feedback

In Figure 2, we assume the developer starts debugging from

a fault-revealing step, therefore, he starts in Simple Causality
Analysis state. The developer stays in this state until we find

recommending steps by dominance relation is either too slow

or too fast.

We detect the case of being too slow by inferring bug-free

paths and summarizing bug-free path patterns to approximate

394395



potential bug-free paths. Once we find some path matches bug-

free path patterns (i.e., bug-free prone) in Simple Causality
Analysis state, we transfer to Bug-free Path Inference state

where we expedite the moving by skipping steps. In Bug-free
Path Inference state, we also reply on user feedback to confirm
our approximation of bug-free paths. When our approximation

is confirmed, we stay in this state. Otherwise, we transfer back

to Simple Causality Analysis state.
We detect the case of being too fast as follows. Given a

path of dominance relation, if the developer provides a wrong-

variable-value or wrong-path feedback at the end step and a

correct feedback at the start step, the root-cause step must

lie in between them. In such case, we enter Inspect Detail
state. In this state, if the developer provides correct feedback,

we sequentially explore and recommend the steps between

the start and end step. Otherwise, we transfer back to Simple
Causality Analysis state.
Since Simple Causality Analysis and Inspect Detail state are

straight-forward, we focus our illustration on Bug-free Path
Inference state.

2) Bug-free Path Inference: Bug-free path inference aims

to infer bug-free paths by user feedback and approximate

potential bug-free paths. During debugging, we discriminate

the steps on more bug-free paths and recommend those on

more “bug-prone” paths to expedite the debugging process.

In our approach, we first infer and record the bug-free path

based on user feedbacks. We extract path pattern for each bug-

free path. We approximate the paths conforming to the pattern

of a bug-free path to be bug-free. During simple causality

analysis, if a path of dominance relation is approximated to

be bug-free, we will skip this path and recommend a further

forward step. Moreover, when we detect that we have over-

approximated some bug-free paths, we adopt a binary-search

based mechanism for complement.

Next, we explain the details of pattern extraction (Sec-

tion III-B2a), step skipping (Section III-B2b), and binary

search (Section III-B2c).

a) Pattern Extraction: Pattern extraction aims to identify

bug-free paths and extract their pattern keys.

Bug-free Path: Given a step step on trace, if one of its read

variables is marked as being of wrong value, then we call this

step as an attributed step. An attributed step means that its

incorrectness is spread from some step executed before. Given

a path of a data dominance relation on the trace, if it satisfies

that both its start step and end step are attributed steps, we

consider it as a bug-free path1.

14
(1)

expr variable value variable

path1 path2
× 

W: × 
15
(2)

5
(3)

6
(4)

7
(5)

8
(6)

5
(7)

6
(8)

8
(9)

5
(10)

6
(11)

8
(12)

5
(13)

6
(14)

8
(15)

9
(16)

10
(17)

11
(28)

12
(29)

13
(30)

14
(31)

15
(32)

× 
W: × 

× 
W: × 

...

iter1 iter2 iter3 iter4

Fig. 3. Path Example

Figure 3 shows a part of trace of the buggy program in

1It is possible that there are over two bugs in the trace, thus a bug may
exist in our defined “bug-free path”. In such case, our approach focuses on
locating the first bug appearing in the trace.

Table I. Each rectangle represents a trace step, the upper

number indicates the corresponding line number in Table I

and the lower number in brackets indicates its order. The dots

between the 17th step and 28th step indicate that the steps

inside method invocation in line 11 in Table I are omitted.

In addition, the curve lines indicate data dominance relations

and their attributed variables. Suppose the developer provided

his wrong-variable-value sequentially on value variable on the
31th step (line 14) and expr variable on the 17th step (line

10), then we have a bug-free path < step17, step31 >.
Pattern Key Extraction: For a path, we abstract it into a more
compact form, i.e., pattern key, so that the paths conforming

to the pattern key is considered as similar.

TABLE II
PATH ABSTRACTION EXAMPLE

1 private int evaluateSimpleExpr ( String simpleExpr ) {
2 String [ ] operators = parseOperators ( simpleExpr ) ;
3 String [ ] numberStrings = simpleExpr . s p l i t (”\\+|−”) ;
4
5 String numString1 = retrieveNum(numberStrings , 0) ;
6 Integer num1 = Integer . valueOf(numString1) ;
7 for ( int i = 0; i < operators . length ; i++) {
8 String operator = operators [ i ] ;
9 String numString2 = retrieveNum(numberStrings , i +1) ;
10 i f ( operator . equals (”+”) ) {
11 num1 = num1 + Integer . valueOf(numString2) ;
12 } else i f ( operator . equals (”−”) ) {
13 num1 = num1− Integer . valueOf(numString2) ;
14 }
15 }
16 return num1;
17 }

Table II shows the details of the method invoked in line

10 and 19 in Table I. The execution of the loop (line 7–

15) causes the iterations going through either path A =<
7, 8, 9, 10, 11, 12, 15 >, B =< 7, 8, 9, 10, 12, 13, 14, 15 > or

C =< 7, 8, 9, 10, 12, 15 > in which the elements represent

line number. In this example, each iteration path (i.e., A, B,
or C) represents the case when evaluating the addition of two
numbers, subtraction of two numbers, or simply one number.

Given a path p containing a number of iterations, we

approximate its semantic similarity with other paths by (1)

whether they contain similar iterations and (2) whether the

iterations are executed in similar order. Thus, we regard p
as a string of iterations, e.g., p =< A,A,B,B,B,A > or

< A,B,A,B >. Then we summarize p into a regular expres-
sion by abstracting its consecutive repetitive substrings [8],

e.g., A∗B∗A or (AB)∗. Such regular expression is the pattern
key of p.
Note that, if p contains nested loop iterations, e.g, <<

A,A,A,B,B,B >,< A,A,B,B >>, we first reduce p into

p′ by generating pattern keys for iterations in the most inner

loop, e.g., p′ =< A∗B∗, A∗B∗ >. Thus the nested hierarchies
in p′ is one level flatter. Then we apply the same procedure

on p′ to further flatten the nested hierarchies, e.g., (A∗B∗)∗.
Such a procedure is applied until all the nested hierarchies in

p is flattened into one patten key.

For the example in Table II, based on the user feedbacks,

if a path < A,B,B > (A for addition and B for subtraction)

can be implied to be bug-free, thus its pattern key is AB∗.
Then we will consider another path < A,B > as more likely

395396



Algorithm 1: Recommendation with Step Skipping

Input : a wrong-variable-value step step
Input : a wrong read variable of step, var
Input : existing bug-free paths bug free paths
Output: recommended step steprec

1 stepd ← dom(step, var);
2 paths ←< stepd, step >;
3 if paths.conformTo(bug free paths) then
4 is skip← true;
5 while is skip do
6 is skip← false;
7 for each read variable read var on stepd do
8 stepnew d ← dom(stepd, read var);
9 path←< stepnew d, stepd >;
10 if path.conformTo(bug free paths) then
11 stepd ← dom(stepnew d, read var);
12 is skip← true;
13 break;
14 end
15 end
16 end
17 end
18 return stepd;

to be bug-free as it conforms to the pattern key (AB∗) of
the former path. The interpretation is as follows. If adding

numbers once then subtracting numbers twice (“3+4-1-5”) is

bug-free, then we approximate that adding numbers once then
subtracting numbers once (“1+3-1”) is more likely to be bug-

free, comparing to other cases such as subtracting numbers

twice (“1-2-3”).

b) Step Skipping: When the developer provides feed-

backs and gets recommended steps with simple casuality

analysis, he is also marking the bug-freeness of the paths

of dominance relation. For the example of Figure 3, if the

developer provides a wrong-variable-value feedback on value
variable on the 31th step, then provides a wrong-variable-value

on expr variable on the recommended data dominator, i.e.,

the 17th step. Apart from recommending the 1st step as the

data dominator, we can also mark the path starting with the

17th step and ending with the 31th step as bug-free. With the

increase of feedbacks, we can have more bug-free paths for

us to conduct step skipping.

Algorithm 1 shows how we skip steps with regard to

recorded bug-free paths. Given a step step where the developer
provides a wrong-variable-value feedback on its read variable

var, we first find the data dominator stepd of step by var
(line 2). Instead of directly returning stepd, we check whether
the path paths of < stepd, step > conforms to one of the

bug-free paths bug free paths (line 2–3). If not, we return

stepd, otherwise, we consider paths prone to bug-free and try
to skip stepd as follows. We go through all the read variables

on stepd and check whether there exists a path path (starting

by stepd’s dominator stepnew d and ending by stepd) is also
bug-free prone (line 7–9). If yes, we can further skip stepnew d

and check its even forward dominators (which is assigned to

stepd) on trace (line 11–13). Otherwise, we stop skipping and
return the most forward dominator stepd.

c) Binary Search: As mentioned before, our skipping

strategy may over-approximate bug-free paths, which makes

us over-skip some steps. We can detect such case when the

Algorithm 2: Recommendation with Binary Search

Input : a list of skipped dominators list
Output: recommended step steprec

1 start← 0, end← list.length− 1, current← start;
2 while start < end do
3 feedback ← user provide feedback on list[current];
4 if feedback is correct then
5 current← 1

2
(current + end); start← current;

6 else if feedback is wrong-variable-value then
7 path←< list[current− 1], list[current] >);
8 varattr ← findAttr(path, list[current]);
9 if varattr �= feedback.var then
10 current← 1

2
(current+ start); end← current;

11 else
12 return simCA(list[current], feedback);
13 end
14 else
15 return simCA(list[current], feedback);
16 end
17 end
18 return list[current];

developer provides a correct-step feedback immediately after

we recommend a step by step skipping. Given a previous step

marked as correct, and a later step marked as wrong-variable-

value, the root cause step should lie in between. Therefore,

we adopt a binary search based strategy as Algorithm 2.

Step skipping will result in a sequential list of skipped

dominators list in execution order. Algorithm 2 applies binary

search on list. During the binary search, if the developer

provides a correct feedback, we search backward on trace in

a binary way (line 4–5). On the contrary, if the developer

provides a wrong-variable-value feedback, we search forward

on trace in a binary way (line 6–13).

Moreover, we leverage developer’s feedback on dominators

in list to confirm our approximation during step skipping.

When the developer provides a wrong-variable-value feedback

on certain dominator list[current] in list, we can check

whether the wrong variable chosen in this feedback is the

same to attributed variable of the skipped path of dominance

relation < list[current − 1], list[current] > (line 7–8). If

yes, we can confirm that we make correct approximation

when skipping < list[current − 1], list[current] > and

continue the binary search procedure (line 9–10). Otherwise,

we regard the developer is no longer debugging on the track

of our approximation during step skipping. Therefore, we

stop the binary search and adopt simple causality analysis on

list[current] instead (line 11–13). With the same reason, we

stop the binary search in the same way when the developer

provides a wrong-path feedback (line 15).

3) Clarity Guidance: Once the developer cannot decide the

correctness of a step, he can provide an unclear feedback. We

aim to guide the developer better understand the unclear step

so that he can resume where he gets lost.

Algorithm 3 shows how clarity guidance works. Given an

unclear step step, we first back up the debugging context of

step such as the details of step skipping or binary search,

in addition, we maintain a stack stack and push step into it

(line 1). Then we retrieve the context step stepcon of step
by getContext() method (line 2). The getContext() method

396397



Algorithm 3: Recommendation with Unclear Feedback

Input : an unclear step step
Output: recommended step steprec

1 back up context of step; stack ← ∅; stack.push(step);
2 stepcon ← getContext(step) and recommend stepcon;
3 while true do
4 feedback ← user provide feedback on stepcon;
5 if feedback is unclear then
6 stepcon ← getContext(stepcon);
7 stack.push(stepcon);
8 recommend stepcon;
9 else if feedback is correct then
10 stepcon ← stack.pop();
11 if stack = ∅ then
12 resume context of stepcon;
13 return stepcon;
14 else
15 recommend stepcon;
16 end
17 else
18 return simCA(stepcon, feedback);
19 end
20 end

returns the step executed before step if its abstract level of

step is 1, and returns the contextual parent (i.e., loop head or

method invocation step) of step otherwise (see definition in

Section III-A). The context aims to provide a big picture so

that the developer can better understand the unclear step.

Then, the developer needs to provide feedback on stepcon.
If the developer provides an unclear feedback on stepcon,
we further retrieve and recommend its context step and push

it into stack (line 5–8). If the developer provides a correct

feedback on stepcon, we pop stack to get the most recent

unclear step and assign it to stepcon (line 9–10). In this case,

if stack is empty, it means that stepcon is the very first step

he gets unclear, therefore, we resume its backed up context

and recommend stepcon (line 11–13). Otherwise, we consider
that the developer is partially clear as he can now tell the

correctness of the context of some unclear step. Thus, we

recommend stepcon for his further feedback (line 14–16).

In addition, if the developer provides a wrong-variable-value

or wrong-path feedback, we consider that the developer has

gotten new debugging clue. Hence, we stop the procedure and

conduct simple causality analysis for stepcon (line 18).

IV. TOOL SUPPORT

We implemented our approach as an Eclipse plugin. A

screenshot can be checked at Microbat Github website [3].

Microbat consists of three views, i.e., Trace view, Feedback
view, and Reason view. The recorded trace will be presented

in Trace view. In Trace view, the steps are organized in a tree
structure conforming to the contextual parent-child relation

and each step is labeled with its execution order, class file

name, and line number. Once the developer clicks a step on

Trace view, the corresponding line of code will be highlighted
in Java Editor, and its detailed information will be showed

on Feedback view. At the top of Feedback view shows the

four types of feedback. Given a selected step, Feedback view

lists its read and written variables, as well as a snapshot of

program states. Once a feedback is provided, the developer can

click the Find Bug button to make Microbat to recommend a

step. After a step is recommended, Reason view shows its

recommendation explanation in natural language. In addition,

the developer can click Undo button to get back to the state

before the recommendation for the current step.

V. SIMULATION EXPERIMENT

We conduct a simulation experiment to answer the following

research questions:

• RQ1: How effectively and efficiently can Microbat facil-
itate the debugging process?

• RQ2: What is the contribution of bug-free path inference

to the debugging process?

• RQ3: What is the impact of unclear feedback?

In the simulation experiment, we generate mutants which

can kill a given test case as buggy code, and apply Microbat
with simulated feedbacks on the trace of mutants to see

whether Microbat can recommend a step running into where

the mutation happens.
We first collect test cases from three Apache open source

projects (see Table III). For each passed test case, we mutate

its tested code with a standard mutator. The mutator replaces

algorithmic operators, logical operators, and number constants,

e.g., replacing “+” with “-”. In each mutation, only one source

code line is modified. If a mutation kills the test case, we

generate the correct trace before mutation, tracec, and the

buggy trace after mutation, tracem. Then, we can reference

tracec to check the correctness of the steps in tracem.
We customize a dynamic programming algorithm [19] [23]

to match the steps between the two traces. If a step in tracem
cannot be matched to a step in tracec, we simulate a wrong-
path feedback. Otherwise, we difference the read and written

variables between two matched steps to check whether the

variable values on the step of mutated trace are correct. If not,

we simulate a wrong-variable-value feedback, otherwise, we

simulate a correct-step feedback.
As for the unclear feedback, we design the simulation as

follows. If the step is the first fault-revealing step at the end of

the trace, the “simulated developer” will not provide a unclear

feedback. Otherwise, given a step s which has an abstract

level (see definition in Section III-A), l, and it is the kth times
checked by our “simulated developer”, then, the probability

to simulate an unclear feedback is P (l, k) = (1 − 1
el−1 )/k.

Intuitively, this is designed such that the lower level s is or

the less times s is checked, the more likely an unclear feedback
is simulated on s.
We call each simulated debugging process on a mutated

trace as a trial. In a trial t, we consider the mutated line

of source code linem as the root cause of the bug. Let the

trace length be lt, if Microbat can recommend a suspicious

step which runs into linem within lt feedbacks, we consider
the trial as effective. In addition, we limit the generated trace

length for each trial to 10,000 steps to avoid infinite loop bugs

introduced by mutation.
For each mutation, we generate multiple trials by enabling

the feature of bug-free path inference and controlling the

amount of provided unclear feedbacks to observe their differ-

ence. We control the amount of simulated unclear feedbacks

397398



to be 0%, 0.5%, 1%, 5%, and 10% of the trace length. We

choose the trials with inference feature enabled and provided

1% unclear feedbacks as representative trials.

A. RQ1: Effectiveness and Efficiency

Table III shows the experiment results on representative

trials, including the number of test cases (TC), number of mu-

tation (MU), average trace length (ATL), average clear/unclear

feedback number (ACF/AUF), median clear/unclear feedback

number (MCF/MUF), and the effective ratio (ER).

TABLE III
EXPERIMENT RESULT

Project TC MU ATL ACF AUF MCF AUF ER
Apache Math2.2 374 2103 2310.8 45.9 14.6 15.0 6 92.4%
Apache Lang3.3 471 1008 233.0 8.5 0.5 2.0 0 93.8%
Apache CLI1.3 80 298 818.4 52.9 3.5 2.0 0 91.3%
Total 925 3409 1565.9 35.5 9.4 6 0 92.8%

Table III shows that Microbat can find 92.8% of the mutated

bugs with our recommendation paradigm. We investigated

the failed trials and found that Microbat could miss some

data dominance relation due to third party library calls. Our

implementation does not analyze the third party library, thus

some missing the data dominance relation results in Microbat
failing to recommend data dominator step in such cases.

Table III also shows that, compared to the average trace

length of 1565.9 steps, Microbat generally requires the de-

veloper to provide on average 35.5 clear feedbacks (with on

average 9.4 unclear feedbacks) and a median of 6 feedbacks.

Figure 4 shows the distribution of required feedback number

versus the trace length. In general, our statistic shows that 65%

of the representative trials require less than 20 clear feedbacks

to locate the bug (the details can be checked at [4]).

0
500

1000
1500
2000
2500
3000
3500
4000
4500

0 2000 4000 6000 8000 10000 12000

Fe
ed

ba
ck

 N
um

be
r

Trace Length
Fig. 4. Feedback Number versus Trace Length

We investigated the trials with a large number of feedbacks,

we found that these cases happen when the bug lies in between

a dominance relation where dominator is correct and the

dominatee is incorrect. In such case, Microbat will transfer to
Inspect Detail state to sequentially inspect the steps. When the

path of the dominance relation is long, it causes a great number

of correct feedbacks. An extreme case happens in one trial

of the test case testUnstableDerivative() in Math project. The

simulated developer provided a wrong-variable-value feedback

on the 5611st step and a correct feedback on the 495th step

where the variable is defined. However, the mutated bug

happens at the 4536th step. After providing a correct-step

feedback at 495th step, Microbat transits the debugging state to
Inspect Detail state. The simulated developer then sequentially
provided 4042 correct feedbacks until he finally found the

mutated bug. We call such case as long-dominance effect.
We will discuss more about it in Section V-D.

B. RQ2: Contribution of Bug-free Path Inference

We regard the inference feature takes positive effect if it

can save feedbacks and negative effect otherwise. Overall, the

feature takes positive effect on 514 (i.e., 15.1%) trials and

negative effect on 10 (i.e., 0.2%) trials. Among these trials,

the feature saves an average of 6.3 (i.e., 10.4%) feedbacks

per trial, and a maximum of 110 feedbacks in one trial. More

comprehensive details can be checked at [4].

C. RQ3: Impact of Unclear Feedback

a) Impact on Feedback Number and Effective Ratio: Ta-

ble IV shows that, when the unclear feedback ratio increases,

the clear feedback number (both on average and median)

increases while the effective ratio almost keeps intact.

TABLE IV
IMPACT ON ER, ACF, AND MCF

Unclear Ratio 0% 0.5% 1% 5% 10%
Feedback
Number

ACF 29.0 32.9 35.5 48.9 55.4
MCF 4.0 5.0 6.0 8.0 10.0

ER 92.7% 92.8% 92.8% 92.4% 92.3%

b) Impact on Inference Feature: Table IV shows that,

on those 524 inference-effective trials, the positive effect

decreases and negative effect increases with the increase

of unclear feedback ratio. Our investigation finds that the

reason lies in the randomness of simulated unclear feedbacks.

First, randomly provided unclear feedback sometimes makes

Microbat hard to stably summarize bug-free path pattern.

Meanwhile, if the random unclear feedback leads Microbat
to Inspect Detail state when long-dominance effect happens,

a large number of correct feedbacks makes the case turn

negative. Nevertheless, the majority of trials (430 out of 524)

still take positive effect under 10% unclear feedbacks.

TABLE V
IMPACT ON INFERENCE FEATURE

Unclear Ratio 0% 0.5% 1% 5% 10%
Inference
Feature

Positive 514 455 436 408 430
Negative 10 39 64 92 83

D. Discussion

In this work, our collected feedbacks are partial
specification. The gap between the partial information

collected through feedbacks and the real specification causes

Microbat sometimes require a large number of feedbacks

when the long-dominance effect happens. Obviously, there

is a trade-off between the effort for developers to provide

feedback and the accuracy of step recommendation. In this

work, we favour the developers’ effort over recommendation

398399



accuracy. Our future work will explore more alternatives of

such trade-off.

In summary, we conclude that Microbat can detect the

majority of our mutated bugs with an acceptable number of

feedbacks; the bug-free path inference makes considerable

contribution to reduce the feedbacks; and the increase of

unclear feedback number impacts little on trial effective rate,

but sometimes offsets the effect of bug-free path inference and

requires more feedbacks to find the bug.

E. Threat to Validity

The main threat in our simulation experiment lies in that

the mutated bugs are still different from the real-world bugs

in practice. Nevertheless, Andrew et al. [11] empirically assess

the effect of mutation and their result shows that the use of

mutation operator yields trustworthy results and seeded faults

are harder to detect.

VI. USER STUDY

We conducted a user study to investigate whether our

technique can help developers debug in practice. We design

the study to answer the following research questions:

• RQ1: Whether can Microbat help developer debug the

program more efficiently in practice?

• RQ2: How does developers use Microbat in practice?

A. Study Design

In this study, we asked the participants to finish three

debugging tasks. We chose Whyline [21], [22] as the baseline

tool to compare with Microbat (A demo of Whyline can be

checked at [7]). Whyline can record the execution trace, allow
developers to ask why or why not questions on trace steps

(e.g., why does the variable equal 3? or why is this statement
executed?), and answer the questions by showing a relevant

source code line. The user study for Whyline showed that

novice programmers with Whyline were twice as fast as expert
programmers without it [21]. The main difference between

Microbat and Whyline lies in that Microbat (1) allows richer
types of feedback such as correct and unclear, and (2) supports

more sophisticated inference for suspicious steps such as bug-

free path inference and clarity guidance.

We recruited 16 graduate students or research staffs as

participants in this study from two universities in Singapore.

We surveyed all the participants and divided them into two

equivalent groups based on their programming experience.

Participants were matched in pairs by their capability and each

pair was randomly allocated to the experimental or control

group. The experimental group used Microbat and the control
group used Whyline to accomplish the same tasks in the study.
We gave tutorials of both tools three hours before the study

and asked the participants to familiarize themselves with an

exercise using their respective tool.

We chose three bugs as debugging tasks which were once

used as the debugging problems in the final exam of software

testing course in Nanjing University (ranking top 5 in China)

TABLE VI
TASK DESCRIPTION

Task Name LOC General Description Bug Reason
#1 Simple Cal-

culator
145 Given a valid algorithmic

expression, parse it into cor-
rect value.

Some negative signs
are parsed to minus
sign.

#2 Longest
Consecutive
Sequence

70 Given an integer array, find
the size of its largest subset
which consists of consecu-
tive elements.

Duplicated elements
in the set are not con-
sidered.

#3 Search In
Rotated
Sorted
Array

85 Given a sorted array is
rotated at some unknown
pivot, find an element in
O(lg(n)) time.

Some boundary
checking is wrong.

in May, 2016. The source code of debugging tasks can be

checked at [2]. Table VI shows brief description of the tasks.

Despite these programs consist of only 70∼145 lines of code,
we regard them as non-trial because (1) the code involves

complicated logic (the statistic of the final exam in Nanjing

University shows that 15.2% of the students failed to locate

the bugs); (2) the participants had to spend some effort to

understand the code details as they were unfamiliar with the

code in advance.

Before the study, we explained the general idea of how each

buggy program works to reduce their effort for program com-

prehension. In the study, the participants were given a failed

test case and required to find the bug with respective debugger.

Since bug fixing is out of the capability of both tools, we did

not require them to fix the bug. Instead, they should write

down the detailed reason why the buggy programs fail with

the given test case. In order to conduct post-mortem analysis

on participants’ behaviors on Microbat, we instrumented the

tool to record the usage frequency of each feature. In addition,

we required the participants in both groups to run a full-screen

recorder throughout the experiment session.

B. Results: Debugging Efficiency (RQ1)

In this study, all the participants in both groups successfully

figured out why the bugs happen. Therefore, we evaluated the

task completion time as their performance.

TABLE VII
PERFORMANCE OF BOTH GROUP (MIN)

Par\Task Task #1 Task #2 Task #3
P1/P9 5.7 15.5 8.1 18.0 10.0 12.1

P2/P10 10.0 10.2 9.8 25.5 7.8 25.4

P3/P11 9.7 25.5 4.2 10.1 7.0 19.5

P4/P12 12.1 36.2 9.5 32.7 10.5 25.1

P5/P13 20.4 35.2 7.3 35.1 13.5 35.3

P6/P14 16.0 42.3 11.4 34.8 6.5 13.0

P7/P15 12.2 27.2 10.7 47.4 11.2 22.5

P8/P16 33.2 48.6 22.9 39.5 12.6 43.4

Avg 14.9 30.1 10.5 30.4 9.9 24.5

p-value 0.012 0.012 0.012

Table VII shows the time used by the participants in both

groups to accomplish three debugging tasks. In Table VII,

P1∼P8 are the participants in Microbat group and P9∼P18 are
the ones in Whyline group. Overall, Microbat group accom-

plished the tasks in shorter time compared with Whyline group.
We introduced the following null and alternative hypotheses

to evaluate how different the performance of both groups is.

• H0: The primary null hypothesis is that there is no sig-

nificant performance difference between the two groups.

• H1: An alternative hypothesis to H0 is that there is sig-

nificant performance difference between the two groups.

399400



We used Wilcoxon’s matched-pairs signed-ranked tests to

evaluate the null hypothesis H0 in terms of the completion

time on each task at a 0.05 level of significance. Table VII

shows that all the p-values are less than 0.05, thus we reject the

null hypothesis for the completion time of all the three tasks

and conclude that there is a significant performance difference

between the two groups. In addition, Table VII shows that

Microbat group completed those tasks in shorter average time.
Hence, we conclude that Microbat group accomplished all the
three debugging tasks in significant shorter time.

C. Results: User Behavior (RQ2)

Table VIII shows the frequency of each feature of Microbat
is used in each debugging task. The features include four types

of feedback provided by the participants, frequency of bug-free

path inference taking effect (noted by “inference”), partici-

pants’ manual clicks on the trace steps (noted by “exploration

on trace”), and undoing certain feedback on a trace step (noted

by “undo”).

TABLE VIII
USER BEHAVIOR OF Microbat GROUP

Task\Par P1 P2 P3 P4 P5 P6 P7 P8 Avg

wrong-variable-
value feedback

#1 12 12 18 16 15 14 31 17 17.13
#2 19 15 6 7 18 8 24 15 14.00
#3 9 21 8 3 5 6 10 9 8.88

wrong-path
feedback

#1 0 0 0 0 0 0 0 0 0.75
#2 0 0 0 0 0 0 0 0 0.00
#3 1 2 1 0 1 2 2 1 1.25

correct feedback
#1 0 7 1 0 0 0 0 0 4.13
#2 5 3 4 3 19 2 1 7 5.50
#3 10 15 12 0 0 3 8 2 5.00

unclear
feedback

#1 0 1 0 0 0 0 0 0 0.13
#2 0 0 0 0 0 2 0 0 0.25
#3 0 0 0 0 0 0 0 0 0.00

inference
#1 1 6 3 0 2 2 4 2 2.50
#2 6 2 5 1 9 3 8 8 5.25
#3 0 0 0 0 0 2 0 0 0.25

exploration on
trace

#1 4 5 1 3 2 2 15 57 11.13
#2 15 21 1 23 7 13 1 8 11.13
#3 15 32 3 36 1 8 1 35 16.38

undo
#1 0 1 2 0 2 0 11 0 2.0
#2 0 0 0 0 28 7 15 0 6.25
#3 0 14 0 0 0 2 3 0 2.38

Overall, we have the following observations. First, wrong-

variable-value feedback is the most frequent among all four

types of feedback. Second, the amount of unclear feedback

is fairly low (only P2 and P6 provided one such feedback).

Third, the bug-free path inference took effect for many par-

ticipants in Task#1/Task#2 but not in Task#3. Fourth, the

participants also actively explored additional steps other than

those recommended ones (average 11.13 times for Task#1 and

Task#2, and 16.38 times for Task#3). Last but not least, some

participants would make wrong feedbacks so that they need

to apply “undo” to correct their previous mistakes.

D. Analysis on Study Results

We analyzed the recorded videos and interviewed some

participants to uncover the reason of the results showed in

Table VII and Table VIII.

1) Why Microbat group debug faster?: We found that the

reason lies in the bug-free path inference and the more explicit

context information provided in Microbat.

First, the bug-free path inference reduced the number of

inspected steps. For example, the trace in Task#1 consists

of 864 steps. It involves 6 loop iterations, each of which

further involves an average of 8 nested loop iterations. With

the inference feature, Microbat can skip a large number of less
suspicious iterations and recommend a more relevant one. In

contrast, the generated questions in Whyline are only relevant

to data and control dominance relations. When the iteration

number increases, the participants in Whyline group usually

need to manually go through a large number of iterations,

which takes considerable time and effort.

Second, the more explicit context information provided by

Microbat speeds up the debugging process. Most participants

started debugging in a backward manner. After a step (or a

source code line) is recommend by Microbat or Whyline, they
usually need to grasp the context of the recommended step.

Otherwise, they would easily get lost in the trace and fail

to provide a clear feedback (for Microbat) or select a correct
question (for Whyline). Microbat organizes the trace steps in a
visualized hierarchical way so that participants can explore the

tree structure to keep track of which iteration or which method

invocation a step belongs to. For example, the buggy program

in Task#2 adopts a greedy strategy to search the size of the

largest consecutive subset (see specification at [1]). In each

iteration of search, the participants should be aware of how

many consecutive subsets had been formed. The participants

in Microbat group can retrieve such contextual information

by simply exploring the parent or children of a step and

checking relevant variables in program state. In contrast, the

participants in Whyline group had to retrieve such information
by iteratively checking the predecessors and successors of the

recommended step in a stepwise manner, which would usually

break their mental flow and affect the debugging efficiency.

2) Why few unclear feedback were provided?: Our inter-

view with some participants in Microbat shows that they often
cannot make a decisive wrong-variable-value, wrong-path, or
correct feedback. However, they did not prefer to provide the

unclear feedback in Microbat either. We found the reason as

follows. Despite participants would get unclear about certain

step during debugging, they usually knew how to explore the

trace to make it clear. Since the participants were the first

time to use Microbat, they had not built much confidence in

the tool. In addition, they needed to keep their debugging

mental flow when inspecting the trace. Hence, when they

had a clue to understand a step, their choice is conservative,

i.e., manually exploring the trace rather than relying on the

tool’s recommendation. It also explains why the frequency of

exploration on trace in Table VIII is high (average 11.13 for

Task#1/Task#2 and 16.38 for Task#3).

3) Why bug-free path inference took effect differently on
tasks?: The recorded video shows that some participants

in Microbat group adopt different strategies when accom-

plishing Task#1/Task#2 and Task#3. When accomplishing

Task#1/Task#2, they located the bug in a backward manner

as we expected. Therefore, the wrong-variable-value feed-

back was provided more frequently (average 17.13/14.00 in

Task#1/Task#2) and the bug-free path inference can take

effect (average 2.50/5.25 in Task#1/Task#2). However, some

400401



participants located the bug in Task#3 in a forward manner

rather than backward manner. The reason is as follows. The

buggy program in Task #3 adopts a binary search strategy to

find an element in a rotated sorted array (see specification

at [5]). After providing several feedbacks at the end of trace,

some participants got no clue of the correct search range

on an intermediate step even after checking its contextual

steps. Therefore, they decided to start from the very beginning

step and explored the trace in a top-down manner, i.e., going

through the trace from high-level steps to low-level steps, and

finally locate the bug. It also explains why the frequency of

exploration on trace increases (average 16.38 times) in Task#3.

In contrast, other participants took some time to summarize

the loop invariants, based on which they provided correct

feedbacks on intermediate steps so that they can debug in a

backward manner as in Task#1/Task#2.

In summary, the user study shows that Microbat outperforms
the state-of-the-art tool in debugging efficiency. Nevertheless,

it also reveals possible useful improvement of our tool, such

as supporting loop invariant summarization and wrong user

feedback detection. We will pursue these improvements in our

future work.

E. Threats to Validity

There are mainly three threats in our user study. First, our

recruited participants were not very familiar with the buggy

programs, which may potentially incur their spending lots of

effort on understanding the code. In order to mitigate this

threat, we describe the general idea of how each program

works with one given test case. Second, we assume that the

experimental group is equivalent with the control group in

their capability and experience, which may be threatened by

the actual differences between the two groups. To mitigate this

threat, we allocated participants with comparable capability

and experience into different groups based on our pre-study

survey. Third, we used three debugging tasks in this study,

which may not be representative for all the cases. Further

studies are required to generalize our findings in large-scale

industrial systems.

VII. RELATED WORK

Spectrum-based fault localization techniques [9], [10], [30],

[32], [33] are widely used to locate bugs in terms of lines of

source code. These techniques compare the code coverage of

passed and failed test cases to provide the most suspicious-

ness code to developers. Reps et al. [30] first proposed the

idea of spectrum-based fault localization, and the researchers

keep improving technique over the years. Renieris et al. [29]

proposed a simple spectrum-based technique and implemented

a tool called WHITHER. Wang et al. [33] improved the effect

of fault localization by addressing the coincident correctness

problem. Abreu et al. [9] further proposed an approach to

detecting multiple faults by combining spectra and model-

based diagnosis. An overview of spectrum-based techniques

can be checked in [10].

Similar to spectrum-based techniques, delta-debugging [15],

[18], [25], [28], [36], [37], [38] also requires a set of passed

and failed test cases. However, these techniques compare the

difference of test cases in more aspects than code coverage,

such as test input [38], program states [15], [37], path con-

straints [28], etc. Zeller et al. [36] first proposed the idea

of delta debugging and used it in regression testing. Then,

they exploited the technique to simplify test case [38], isolate

bug-causing variable [15], [37], and etc. Followed by their

work, Misherghi et al. [25] proposed an improvement to refine

the result of delta-debugging. With similar ideology, Qi et

al. [28] and Yi et al. [34] referenced the “delta” in versions

of regression testing to facilitate fault localization.

Different from these techniques, our approach assumes no

comparison with a passed test case. In addition, our approach

locates the bug in finer grain in terms of buggy step instead

of line of source code.

Similar to our approach, a lot of techniques [12], [20], [21],

[22], [26], [27], [31], [35] leverage program execution trace for

the fault localization. Ressia et al. [31] proposed an object cen-

tric debugging approach which facilitates tracking a specific

object instance during the execution. Yuan et al. [35] proposed

a tool called SherLog which infers the reason of program

failure by combining recorded program log and source code.

Pohier et al. [26], [27] proposed omniscient debugger which

records the whole execution trace of a debugged program and

enables user to explore it. Ko et al. [20], [21], [22] built a

tool called Whyline which provides an interface to allow user

to select some questions on program output and the tool can

find possible explanation by dynamic slicing on the recorded

program trace. Our approach is different from these works in

that we (1) allow richer types of feedbacks and (2) support

more sophisticated inference for suspicious steps.

Additionally, Lo et al. [17] proposed a feedback-based ap-

proach to improve spectrum-based fault localization approach

with user feedback on recommended suspicious program state-

ments. In contrast, our approach allows developers to provide

feedback on execution steps to localize the fault.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we propose a feedback-based debugging

approach which incorporates developers’ feedback on recorded

program execution steps. By inferring and approximating the

bug-free paths, our approach aims to iteratively guide them to

localize the root-cause step. Our simulation experiment shows

that our approach can effectively and efficiently locate the

buggy step, and our case study indicates that our tool Microbat
is practical to facilitate the debugging tasks. In our future

work, we would pursuit new features such as solving long-

dominance effect, summarizing loop invariant on trace steps,

and detecting mistaken feedback on Microbat.

IX. ACKNOWLEDGEMENT

We thank the anonymous reviewers for their valuable

comments and suggestions. This research has been partially

supported by the National Research Foundation, Singapore

(No. NRF2015NCR-NCR003-003), and the National Science

Foundation of China (No. 61572349, 61272106).

401402



REFERENCES

[1] Longest consecutive sequence. https://leetcode.com/problems/
longest-consecutive-sequence/. Accessed Augest 20, 2016.

[2] Microbat experiment code. https://github.com/llmhyy/microbat
experiment. Accessed Augest 20, 2016.

[3] Microbat github website. https://github.com/llmhyy/microbat. Accessed
Feb 2, 2017.

[4] Microbat webpage. http://linyun.info/microbat/. Accessed Feb 2, 2017.
[5] Search in roated sorted array. https://leetcode.com/problems/

search-in-rotated-sorted-array/. Accessed Augest 20, 2016.
[6] Simple calculator problem. https://leetcode.com/problems/

basic-calculator/. Accessed Augest 20, 2016.
[7] Whyline video. https://www.youtube.com/watch?v=3L4MK2dG 6k.

Accessed Augest 20, 2016.
[8] Biological Sequences and the Exact String Matching Problem, pages

43–63. 2006.
[9] R. Abreu, P. Zoeteweij, and A. J. C. v. Gemund. Spectrum-based

multiple fault localization. In Proceedings of the 2009 IEEE/ACM
International Conference on Automated Software Engineering, pages
88–99, 2009.

[10] R. Abreu, P. Zoeteweij, R. Golsteijn, and A. J. van Gemund. A practical
evaluation of spectrum-based fault localization. Journal of Systems and
Software, 82(11):1780 – 1792, 2009.

[11] J. H. Andrews, L. C. Briand, and Y. Labiche. Is mutation an appropriate
tool for testing experiments? In Proceedings of the 27th International
Conference on Software Engineering, pages 402–411, 2005.

[12] E. T. Barr and M. Marron. Tardis: Affordable time-travel debugging in
managed runtimes. Technical report, 2014.

[13] B. Beizer. Software Testing Techniques (2Nd Ed.). 1990.
[14] M. Beller, G. Gousios, A. Panichella, and A. Zaidman. When, how,

and why developers (do not) test in their ides. In Proceedings of the
2015 10th Joint Meeting on Foundations of Software Engineering, pages
179–190, 2015.

[15] H. Cleve and A. Zeller. Locating causes of program failures. In Pro-
ceedings of the 27th International Conference on Software Engineering,
pages 342–351, 2005.

[16] J. S. Collofello and S. N. Woodfield. Evaluating the effectiveness
of reliability-assurance techniques. Journal of System and Software.,
9(3):191–195, 1989.

[17] L. Gong, D. Lo, L. Jiang, and H. Zhang. Interactive fault localization
leveraging simple user feedback. In IEEE International Conference on
Software Maintenance, pages 67–76, 2012.

[18] N. Gupta, H. He, X. Zhang, and R. Gupta. Locating faulty code
using failure-inducing chops. In Proceedings of the 20th IEEE/ACM
International Conference on Automated Software Engineering, pages
263–272, 2005.

[19] D. S. Hirschberg. A linear space algorithm for computing maximal
common subsequences. Commun. ACM, 18(6):341–343.

[20] A. J. Ko and B. A. Myers. Designing the whyline: A debugging interface
for asking questions about program behavior. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, pages
151–158, 2004.

[21] A. J. Ko and B. A. Myers. Debugging reinvented: Asking and answering
why and why not questions about program behavior. In Proceedings of
the 30th International Conference on Software Engineering, pages 301–
310, 2008.

[22] A. J. Ko and B. A. Myers. Finding causes of program output with the
java whyline. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pages 1569–1578, 2009.

[23] Y. Lin. Technique report: A tree-based approach to identifying and
explaining regression bug. http://linyun.info/microbat/report.pdf, 2017.
Accessed Jan 31, 2017.

[24] T. Liu, C. Curtsinger, and E. D. Berger. Doubletake: Evidence-based
dynamic analysis. In Proceedings of the 38th International Conference
on Software Engineering, 2016. accepted.

[25] G. Misherghi and Z. Su. Hdd: Hierarchical delta debugging. In Pro-
ceedings of the 28th International Conference on Software Engineering,
pages 142–151, 2006.

[26] G. Pothier and . Tanter. Back to the future: Omniscient debugging. IEEE
Software, 26(6):78–85, 2009.

[27] G. Pothier and E. Tanter. Summarized trace indexing and querying for
scalable back-in-time debugging. In Proceedings of the 25th European
Conference on Object-oriented Programming, pages 558–582, 2011.

[28] D. Qi, A. Roychoudhury, Z. Liang, and K. Vaswani. Darwin: An
approach for debugging evolving programs. In Proceedings of the
7th Joint Meeting of the European Software Engineering Conference
and the ACM SIGSOFT Symposium on The Foundations of Software
Engineering, pages 33–42, 2009.

[29] M. Renieris and S. P. Reiss. Fault localization with nearest neighbor
queries. In Proceedings of International Conference on Automated
Software Engineering, pages 30–39, 2003.

[30] T. Reps, T. Ball, M. Das, and J. Larus. The use of program profiling for
software maintenance with applications to the year 2000 problem. In
Proceedings of the 6th European SOFTWARE ENGINEERING Confer-
ence Held Jointly with the 5th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, pages 432–449, 1997.

[31] J. Ressia, A. Bergel, and O. Nierstrasz. Object-centric debugging. In
Proceedings of the 34th International Conference on Software Engineer-
ing, pages 485–495, 2012.

[32] R. Santelices, J. A. Jones, Y. Yu, and M. J. Harrold. Lightweight
fault-localization using multiple coverage types. In Proceedings of 31st
International Conference on Software Engineering, pages 56–66, 2009.

[33] X. Wang, S. C. Cheung, W. K. Chan, and Z. Zhang. Taming coincidental
correctness: Coverage refinement with context patterns to improve fault
localization. In Proceedings of the 31st International Conference on
Software Engineering, pages 45–55, 2009.

[34] Q. Yi, Z. Yang, J. Liu, C. Zhao, and C. Wang. A synergistic analysis
method for explaining failed regression tests. In Proceedings of the 37th
International Conference on Software Engineering - Volume 1, pages
257–267, 2015.

[35] D. Yuan, H. Mai, W. Xiong, L. Tan, Y. Zhou, and S. Pasupathy. Sherlog:
Error diagnosis by connecting clues from run-time logs. In Proceedings
of the Fifteenth Edition of ASPLOS on Architectural Support for Pro-
gramming Languages and Operating Systems, pages 143–154, 2010.

[36] A. Zeller. Yesterday, my program worked. today, it does not. why?
In Proceedings of the 7th European Software Engineering Conference
Held Jointly with the 7th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, pages 253–267, 1999.

[37] A. Zeller. Isolating cause-effect chains from computer programs. In
Proceedings of the 10th ACM SIGSOFT Symposium on Foundations of
Software Engineering, pages 1–10, 2002.

[38] A. Zeller and R. Hildebrandt. Simplifying and isolating failure-inducing
input. IEEE Transaction on Software Engineering, 28(2):183–200, 2002.

402403


