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ABSTRACT
Architectural refactorings can contain hundreds of steps and expe-
rienced developers could carry them out over several weeks. More-
over, developers need to explore a correct sequence of refactorings
steps among many more incorrect alternatives. Thus, carrying out
architectural refactorings is costly, risky, and challenging. In this
paper, we present Refactoring Navigator: a tool-supported and in-
teractive recommendation approach for aiding architectural refac-
toring. Our approach takes a given implementation as the starting
point, a desired high-level design as the target, and iteratively rec-
ommends a series of refactoring steps. Moreover, our approach
allows the user to accept, reject, or ignore a recommended refac-
toring step, and uses the user’s feedback in further refactoring rec-
ommendations. We evaluated the effectiveness of our approach and
tool using a controlled experiment and an industrial case study. The
controlled experiment shows that the participants who used Refac-
toring Navigator accomplished their tasks in 77.4% less time and
manually edited 98.3% fewer lines than the control group. The
industrial case study suggests that Refactoring Navigator has the
potential to help with architectural refactorings in practice.

CCS Concepts
•Software and its engineering→Maintaining software; Search-
based software engineering;

Keywords
automatic refactoring, reflexion model, high-level design, interac-
tive, user feedback

1. INTRODUCTION
The maintenance of industrial projects is often hindered by tech-

nical debt, which is a metaphor of sacrificing long-term quality
for short-term value. A recent empirical study [11] on industrial
projects shows that architectural flaws are the most important source
of technical debt. Although architectural flaws could be addressed
by refactoring, developers often perceive architectural refactoring
as substantially costly and risky [12, 23].

Examples of architectural refactorings include decoupling a large
code base into smaller modules, retrofitting a design pattern, etc. In
these cases, the developer has a desired high-level design in mind
as the target of refactoring. However, the developer needs to con-
duct a series of low-level refactorings to achieve the desired design.
Without explicit guidance about which path and/or which refactor-
ings to take, such refactoring tasks can be demanding. For example,
one of our industrial partners took several weeks to refactor the ar-
chitecture of a medium-size project of 40K LOC (see Section 4.2).

Several books [12, 15, 22] written about refactoring legacy code
and several workshops on technical debt [1] present substantial
costs and risks of large-scale, architectural refactorings. For ex-
ample, Tokuda and Batory [44] presented two case studies where
architectural refactoring involved more than 800 refactoring steps,
estimated to take more than 2 weeks. From these examples, we see
a need for automation of the process. Several researchers proposed
to automate various stages of the process for applying small-scale
refactorings, such as identifying refactoring opportunities [7–10,
41, 45, 46], scheduling code smell resolution sequences [27], auto-
matically completing refactoring operations [14,16], and searching
for optimal refactoring solutions [19, 36, 37, 40].

Our approach is guided by several observations. Fully automatic
refactoring usually does not lead to the desired architecture. Re-
search and experience [35] show that even semi-automated tools for
lower-level refactorings have been underutilized. Moreover, human
designers understand the problem domain better and their feedback
should be included in tool-supported refactoring.

In this paper, we present a tool-supported, interactive, and guided
recommendation approach for architectural refactoring. We im-
plemented our approach as a tool, Refactoring Navigator (RN for
short)1, based on the metaphor of the GPS route navigation. We
consider the current implementation of a software system as the
starting point, the desired high-level structure as the target, and cal-
culates a reflexion model [32] to reveal the discrepancies between
the source and desired design. The bigger the discrepancies are, the
larger the distance between the starting point and the target is.

RN calculates and recommends refactoring “paths” from the
starting point to the target, each path being a sequence of stepwise
atomic refactorings, such as moving a method from one class to an-
other, decomposing a class, or pulling up a field/method. The user
can examine the recommended steps, and accept, reject, or ignore
them interactively. RN records these decisions as user feedback,
and considers them when calculating the next recommendation.

RN applies the accepted recommendations to the source code
automatically and updates the reflexion model accordingly. Based
on the updated reflexion model and user’s feedback, RN launches
a new iteration with updated refactoring recommendations. This

1RN demo: https://www.youtube.com/watch?v=YVT5UU7xqCQ
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way, the user can complete the refactoring process in an iterative
and interactive manner. In each iteration, RN uses a hill-climbing
algorithm to recommend refactorings that increase the consistency
between the source and the target, optimize modularity metrics, and
incorporate user feedback on preferred refactorings.

We used two complementary methods to evaluate RN: a con-
trolled experiment, and a case study on an industrial project. In the
controlled experiment, two groups of students performed the same
architectural refactoring task. Both groups used RN to generate
and examine reflexion models, while only the experimental group
used the recommendation function of RN. The control group was
additionally equipped with code smell detection tools to find and
automate refactoring opportunities. We compared the refactoring
results and analyzed the behaviors of the two groups. The results
indicate that RN significantly improves the efficiency of refactor-
ing: on average, the experimental group participants spent only
13.3 minutes to finish refactoring, and manually edited 6 lines of
code. By contrast, the control group participants spent 59 minutes
and had to manually edit 354 LOC. The savings on both time and
effort were significant.

To further validate our approach, we conducted an industrial case
study by applying RN to refactor the original source code from an
industrial partner. This real-world industrial project has over 40K
LOC, and our industrial partner had previously encountered signifi-
cant challenges in architectural refactoring, spending several weeks
on the task. Using RN, we accomplished the refactoring in less than
a day, showing the feasibility of applying RN in real projects.

This paper makes the following contributions:
Approach: Our approach uses a hill-climbing algorithm to search

and recommend refactoring “paths” that revises source code step
by step toward a target design, and completes atomic refactoring
steps automatically. Instead of a push-button technique that may
produce results that users do not want, our approach uses feedback
interactively to recommend refactoring steps.

Implementation: We implemented our approach in the RN tool2

developed as an Eclipse plugin so that the user can benefit from the
interactive features of an IDE, such as previewing the results.

Evaluation: We conducted a two-pronged empirical evaluation.
A controlled experiment shows that the RN users can accomplish
their refactoring task in 77.4% less time and edited 98.3% fewer
lines of code. A case study on an industrial project suggests that RN
has the potential to help with architectural refactoring in practice.

2. AN ILLUSTRATIVE EXAMPLE
To illustrate our approach, we use a bus monitoring software sys-

tem that has evolved over time. As shown in Figure 1a, the latest
implementation contains: a BusMonitor class containing data and as-
sociated methods reflecting the dynamic information of buses such
as schedules and location, a VehicleUI class that accepts user queries
about bus information, and three views—MapView, TableView and
CurveView classes—to display dynamic operational information of
buses in different formats.

2RN at GitHub: https://github.com/llmhyy/Refactoring-Navigator

At the early stages, only MapView was required, and the BusMon-
itor class created and maintained an instance of MapView. Later on,
when the project required a table view and curve view, the devel-
oper extended BusMonitor to maintain two more instances, and its
updateViews() method enumerated and updated all three views.

As the project required more views, it is obvious that BusMonitor
quickly grew into a god class, and the proper refactoring strategy is
to apply the Observer pattern, as shown in Figure 1b. In this target
design, the bus information data should be isolated into a BusData
module that takes the role of Subject. The Concrete View module
should contain classes taking the role of Concrete Observers, such
as the MapView class. An Abstract View observer interface is needed
to decouple the Subject from Concrete Observers.

Exisiting work on reflexion model [32] can be used to show the
discrepancies between the implementation and the target design,
but it leaves the refactoring task to the developer. Although this
small example appears to be straightforward, in the real project
where we extracted this example, the BusMonitor was already a God
class that contained many functions related to bus data manipula-
tion and was tangled with many other classes. In order to extract
Bus Data module and decouple BusMonitor from all the views, the
developer must read through thousands lines of code, deal with
compilation errors, and preserve the refactored program behaviors.
In large systems, such refactoring can be very time consuming.

Thus we ask the question, can state-of-the-art automatic refac-
toring tools help alleviate the maintenance costs? We applied two
representative refactoring tools, JDeodorant [13, 46] (a code smell
detector) and CodeImp [37] (a search-based refactoring tool) to the
bus monitoring system for exploration.

Given the source code, JDeodorant reports 16 feature-envy and
9 God-class smells. However, after removing these code smells,
the refactored implementation and the target design still differ sig-
nificantly. As an example, JDeodorant suggests to move the init()
method from the BusMonitor class to the VehicleUI class to reduce
coupling. Yet this move does not help eliminate the inconsisten-
cies between the implementation and the target design. Because
JDeodorant provides an unordered list of basic refactoring sugges-
tions for various code smells, and provides multiple ways to fix a
smell, it presents no clear steps or order leading to the target design.

CodeImp provides consecutive steps guiding developers to per-
form stepwise refactorings in order to improve design metrics, such
as LCOM5, RFC, CBO [20]. The most recommended steps suggest
redistributing the fields and methods between BusMonitor and its su-
per class Monitor. For example, the first three steps aim to pull up
the updateMap(), updateTable(), and updateCurve() methods from Bus-
Monitor to Monitor to improve the LCOM5 metrics. The fourth step
aims to pull down the activatedViewNum field from Monitor to Bus-
Monitor to improve the CBO metrics. Obviously, these refactorings
do not lead the implementation to the target design.

Clearly, existing state-of-the-art tools were not designed for ar-
chitectural level refactoring. In this paper, we present RN, a novel,
interactive, tool-supported technique to address these problems. For
example, given a source model depicted in Figure 1a and a tar-
get design in Figure 1b, RN will first recommend a “path” with 4
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atomic refactoring steps:
Step 1. Move Method: move updateMapView() method from Bus-

Monitor class to MapView class;
Step 2. Move Method: move updateTableView() method from Bus-

Monitor class to TableView class;
Step 3. Pull Up Method: pull up updateMapView() method in Map-

View class and updateTableView method in TableView class to a newly
created abstract class in AbstractView module.

Step 4. Extract Class: split the large Bus Monitor class by extract-
ing out a refresh() method that invokes view-updating methods and
several bus data relevant fields.

For each recommended step, the user can accept, ignore, or reject
it. If the user accepts a recommended step, RN will automatically
execute it and refactor the source code. If the user rejects a recom-
mended step, RN will recalculate a new path, taking user feedbacks
(i.e., the previous decisions) into consideration. For example, if the
user rejects Step 3 after the first two steps are accepted and exe-
cuted, RN will recalculate and recommend the following path:

Step 3. Move Method: move updateCurveView() method from Bus-
Monitor class to CurveView class;

Step 4. Pull Up Method: pull up the three view-updating meth-
ods to a newly created abstract class in AbstractView module.

Step 5. Extract Class: split the large Bus Monitor by extracting
refresh() and data fields.

If the user accepts all these steps, RN will complete these atomic
refactorings automatically, and the Bus Monitor source code will
be refactored into an Observer pattern, without the user writing a
single line of code.

3. APPROACH
Figure 2 presents an overview of RN that consists of six steps.

The grey rectangles represent steps requiring human intervention.
We briefly explain and then elaborate each step.

1.Target Design 
Construction

Target 
Model

2.Source Model 
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4.Refactoring 
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Source
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Source
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Figure 2: Approach Overview

1. Target Design Construction: The user starts RN by first con-
structing a Target Model that reflects the desired structure. Similar
with other work on reflexion models [32] [38], the Target Model is
simply a graph with nodes (modules) and edges (relations among
modules). The user can also select the part of the source code
she/he thinks should conform to the target model.

2. Source Model Extraction: From the selected source code, RN
automatically generates a Source Model, which is another graph
reflecting the relation among program elements.

3. Reflexion Model Generation: Given the Target Model and
Source Model as input, RN calculates a Reflexion Model to reveal
discrepancies between the two graphs.

4. Refactoring Path Calculation: Using the Reflexion Model as
input, RN computes an ordered list of refactoring Recommenda-
tions. These recommendations form a path (i.e., refactoring steps)
that will refactor the source code towards the target design.

5. User Examination: Given each recommended step, the user
can decide whether to accept, reject, or ignore it. RN will take
these User Feedbacks into consideration when calculating the next
steps to recommend.

6. Recommended Step Execution: Each accepted step will be
executed, updating both source code and Source Model automati-
cally. After that, RN enters step 3 to generate an updated Reflexion
Model and starts a new iteration consisting of steps 3, 4, 5, and 6.

The refactoring process ends when no discrepancies exist in the
reflexion model, or the tool cannot produce further refactoring rec-
ommendations to eliminate the discrepancies. The user can manu-
ally change the source code or adjust the target model at any time
to restart the iteration. Next we elaborate on these 6 steps.

3.1 Target Model Construction
Similar with traditional reflexion models, RN allows the user

to draw a simple box-and-line graph modeling the desired design.
Each box has a name, representing a module, i.e., a collection of
program elements. The user can enter a set of descriptive keywords
that are used to find matching source code elements.

Different from existing work on reflexion model, RN distinguishes
three types of dependencies between modules:

Inheritance: module M1 inherits M2 if some class in M1 inher-
its from, or implement, classes or interfaces in M2;

Creation: module M1 and module M2 have creation relation if
some class in M1 creates instances of classes in M2;

Other: classes in module M1 and module M2 have dependency
relations other than inheritance and instantiation.

Two modules can have multiple relations. We distinguish these
three types based on the rationale that abstraction through interface
implementation is a common refactoring strategy, while an entry
class, e.g. a UI class, usually has to create a lot of classes, but does
not substantially depend on them.

Figure 1b depicts a target model, the application of Observer pat-
tern to the bus monitoring system. The Abstract View should contain
the Observer interface definition. The Concrete View module should
contain classes taking the role of Observers. The Bus Data model
should contain classes playing the role of Subjects. The Monitor
GUI model contains entry classes whose only task is to instantiate
Observer classes. The descriptions within each box are keywords
RN uses to match source code elements. For example, classes with
words “table”, “map”, “curve”, “view”, are likely to be observers.

3.2 Source Model Extraction
Given a designated piece of source code, RN extracts a source

model representing program elements and their dependencies. A
program element can be a class, interface, method, or field. De-
pendencies include inheritance, implementation, method call, field
access, type reference, and instance creation. In a source model,
we similarly categorize dependencies into Inheritance, Creation,
and Others as defined in target model. Figure 1a depicts the source
model extracted from the code of the bus monitoring system.

3.3 Reflexion Model Generation
Given the target and source models, RN generates a reflexion

model by mapping source model elements to target model mod-
ules. A reflexion model reveals the difference between the source
and the target by revealing conformance and discrepancies: 1) Con-
vergence Dependency: a dependency exists in both the target and
the source; 2) Absence Dependency: a dependency exists in the tar-
get but missing in the source; and 3) Divergence Dependency: a
dependency exists in the source but not expected in the target.

Figure 1c shows a reflexion model generated from the target and
source shown in Figure 1b and Figure 1a. In this case, RN maps
MapView, TableView, and CurveView classes into the ConcretView mod-
ule in the target, maps the other classes into the MonitorGUI mod-
ule. This mapping results in four absence dependencies to Bus Data
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and Abstract View modules since none of the source elements are
mapped to them. After applying Observer Pattern, the Monitor GUI
module should only be responsible for creating objects, but does
not have any other dependencies to the views. In the current source
code, however, the Bus Monitor depends on all three views, which
explains the divergence dependency from Monitor GUI module to
Concrete View module. Next we elaborate on the mapping algorithm.

The Mapping Algorithm.
The objective of the algorithm is to find the best one-to-many

mappings between each module in the target, and program ele-
ments in the source, using two criteria: 1) lexical similarity: the
topic/concern description of the module and program elements shou-
ld match most, and 2) design conformance: the consistency be-
tween the target and the source should be maximized.

Similar to existing work (e.g., [28]), we measure lexical similar-
ity based on the descriptions of modules provided by the user and
the code text of program elements. We transform each model de-
scription or program element into a document by tokenization, fil-
tering out stop words and word stemming, and encode it in a Term-
Frequency/Inverse-Document-Frequency (TF/IDF) vector [5]. For
a modulemwith an n-dimensional TF/IDF vector Vm and a class/in-
terface c with an n-dimensional TF/IDF vector Vc, we compute
their lexical similarity as follows:

Simlex(m, c) =

∑n
i=1 Vm[i]× Vc[i]√∑n

i=1 Vm[i]2 ×
√∑n

i=1 Vc[i]
2

(1)

To calculate design conformance, we quantify the two types of
inconsistencies (i.e., absence and divergence) for each dependency
type (Inheritance, Creation, or Other) as follows. Given a depen-
dency type dType, let the set of absence dependencies of dType
be Dabs(dType), the set of convergence dependencies of dType
as Ddiv(dType), the number of modules in target model as Nm,
and calculate the design conformance of type dType as follows.

Simstr(dType) = 1−
|Dabs(dType)|+ |Ddiv(dType)|

Nm × (Nm − 1)
(2)

Generally, Equation 2 indicates that (1) the more absence (or di-
vergence) dependencies of type dType are derived from the map-
ping, the less design conformance value is, and (2) the conformance
value is normalized between 0 and 1.

Given these two measures, we use a genetic algorithm (GA) [17]
to find an optimal mapping solution to generate reflexion model.
It first generates a set of individuals as the initial population, then
evolves the population by creating new generations of mapping so-
lution through an iterative process, until the algorithm reaches a
predefined number of generations Ngen. An individual represents
a set of mappings, consisting of a sequence of genes, each indicat-
ing which module a program element is mapped to. For example,
an individual [1, 2, 1, 3] represents four classes/interfaces (an el-
ement index in the array) mapped to modules 1, 2, 1, and 3 (an
element value in the array) respectively.

The algorithm randomly generatesNpop individuals as the initial
population (whereNpop is a predefined even number indicating the
size of the population). We represent each individual’s fitness value
as the weighted sum of lexical similarity and design conformance:

Fmap = w1 ×

∑
c∈CS

Simlex(Map(c), c)

|CS|
+ w2 ×

∑
t∈DT

Simstr(t)

|DT |
(3)

In the above equation, CS and DT are the set of classes/inter-
faces in the source and the set of dependency types in the target
respectively; Map(c) is the target module that c maps to, and w1

and w2 are two predefined weights satisfying w1 + w2 = 1.

We randomly pair all individuals in Npop into N/2 pairs. For
two paired individuals parent1 and parent2, our approach gener-
ates two offsprings, offspring1 and offspring2, by exchanging their
genes. For each gene, we pass the value from parent1/parent2 to
offspring2/offspring1 with a given probability Pcrossover . We then
mutate the genes of the offsprings. For each gene, our approach
changes the value to indicate mapping to another randomly selected
target module with a given probability Pmutation.

After the algorithm reproduces a new generation with 2Npop in-
dividuals, we sort them by fitness in descending order and select
the first set of Npop individuals as the candidate generation. To en-
sure diversity, the approach does not allow the same individual to
appear multiple times in one generation. Accordingly, it will scan
the first set of Npop individuals to identify those duplicated ones
and replace them with ones in the second set of Npop individuals.

3.4 Refactoring Path Calculation
Similar to a GPS navigator that calculates routes given a start

location and a destination, RN calculates refactoring “paths” given
a source model and a target model. Each path consists of an or-
dered list of atomic refactoring steps. Following existing work on
automatic refactoring [13, 21, 46], we support the following types
of atomic refactorings: 1) Move Method—moving a method from
one class to another; 2) Extract Class—decomposing a large class
into smaller classes; and 3) Pull Up Field/Method—extracting and
moving similar fields or methods from multiple classes to an exist-
ing or a newly created abstract class or interface. Different from
previous work, our objective is to identify refactoring opportuni-
ties that lead to the target design. To ensure that each refactoring
preserves the program behavior, our approach examines a set of
preconditions for each atomic refactoring, following and extending
on existing work [13, 21, 46].

We use a search-based algorithm to find an optimal refactoring
path criteria: 1) minimizing the inconsistencies between the target
and source; 2) improving OO design quality, such as coupling and
cohesion; and 3) maximizing the lexical similarity between the tar-
get and source. We now introduce how we quantify these criteria
as fitness value and how our search algorithm works.

Fitness Value of Reflexion Model.
Inconsistency. We measure this primary factor by the number of

remaining inconsistencies after applying a series of refactorings:

Nstr =
∑

t∈DT

(|Dabs(t)|+
∑

d∈Ddiv(t)

|SrcD(d)|) (4)

In Equation 4, the general inconsistency consists of absence in-
consistency and divergence inconsistency of all types of depen-
dency. We use DT as the set of dependency types, and for each
dependency type t ∈ DT , Dabs(t) and Ddiv(t) are its absence de-
pendency set and divergence dependency set of the resulted reflex-
ion model respectively. As for absence dependency set of type t,
we simply use its size to quantify the absence inconsistency. How-
ever, as for divergence dependency set, we quantify the divergence
inconsistency in a finer way. Given a divergence dependency d,
we use SrcD(d) to denote the set of program dependencies (e.g.,
method invocation, field access, etc.) contributing to d. For exam-
ple, a divergence dependency between modules M1 and M2 could
be contributed by 5 method invocations, thus, any refactoring sup-
posed to reduce the number of method invocation between M1 and
M2 should decrease the inconsistency of the reflexion model.

For the example showed in Figure 1c, there exist three types
of dependency, i.e., Inheritance, Creation, and Other. For Inheri-
tance, ti, |Dabs(ti)| = 1 and |Ddiv(ti)| = 0; For Creation, tc,
|Dabs(tc)| = 1 and |Ddiv(tc)| = 0; For Other, to |Dabs(to)| = 2
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and |Ddiv(to)| = 1. In addition, there are 6 method invocations
contributing to the divergence dependency from Monitor GUI mod-
ule to Concrete View module. As a result,
Nstr = 1 (Inheritanceabs)+1 (Creationabs)+(2 (Otherabs))+
1 (Otherdiv)× 6) = 10

Quality. We measure design quality by CBO (Coupling Be-
tween Objects, a value between 0 and 1, indicating the overall cou-
pling in the source) and LCOM5 (Lack of Cohesion Of Methods, a
value between 0 and 1 indicating the lack of cohesion of methods
of a class/interface c within all the classes/interfaces, CS) [20].

DQavg =
CBO +

∑
c∈CS

LCOM5(c)

|CS|

2
(5)

Lexical Similarity. This measures the average lexical similarity:

Simlex_avg =

∑
c∈CS

Simlex(Map(c), c)

|CS|
(6)

Given these measures, we define a fitness function for a refactor-
ing path as follows:

Fref = −Nstr −DQavg − (1− Simlex_avg) (7)

The fitness value is less than 0. The higher the value, the better
the solution. In Equation 7, Nstr ∈ [0,∞), DQavg ∈ [0, 1), and
Simlex_avg ∈ [0, 1]. It indicates that the consistency between the
target and source is dominating, and OO design metrics and lexical
similarity are used to break ties.

Refactoring Path Generation Algorithm.
We use a revised multiple ascent hill-climbing (HCM) algorithm

to search for an optimal refactoring path (see Algorithm 1). This
algorithm has three features: it iteratively attempts to reach highest
fitness value, adapts hill-climbing algorithm to avoid being trapped
in a local optima, and takes user feedback into consideration to
adjust fitness value. The algorithm takes as input a reflexion model
model, recorded fb, and a given descent number descNum, and
returns a refactoring path (i.e., a series of refactoring steps).

Input : reflexion model model, feedbacks fb, descent number descNum
Output: bestSolution

1 bestF it = evalF itness(model);
2 bestSolution = [ ];
3 solution = [ ];
4 for i = 0; i < descNum; i + + do
5 localBestF it = evalF itness(model);
6 while true do
7 refCands = identifyOpps(model.getSrcModel());
8 if refCands == ∅ then
9 return bestSolution;

10 end
11 ref = findBestRef(model, refCands, fb);
12 model = model.apply(ref);
13 solution.add(ref);
14 fit = evalF itness(model);
15 if fit > localBestF it then
16 localBestF it = fit;
17 else
18 if localBestF it > bestF it then
19 bestF it = localBestF it;
20 bestSolution = solution;
21 end
22 break;
23 end
24 end
25 end
26 return bestSolution;

Algorithm 1: Search-Based Refactoring Recommendation

The algorithm first computes the fitness value (see Equation 7)
of the given reflexion model, and initializes the value of bestF it
(Line 1), along with two empty lists, bestSolution and solution
(Line 2-3). It then repeats a procedure of searching a local opti-
mum for descNum times as follows. It first initializes the value of
localBestF it (Line 5), then finds a local optimum in an iterative
process (Line 6-24).

In each iteration, the algorithm identifies a set of possible refac-
toring opportunities refCands (Line 7). If refCands is not emp-
ty, the algorithm selects a best candidate refactoring by combining
the fitness function with user feedback (Line 11, see Equation 8).
The selected refactoring ref is then applied to the current model
(Line 12) and added to the current solution (Line 13). If the fit-
ness value of the updated model is greater than localBestF it, the
algorithm updates the local optimum (Line 16). Otherwise, a lo-
cal optimum has been reached. If the fitness value is greater than
bestF it, the best solution is updated to the current local optimum.
Once a local optimum is reached, the algorithm escapes the local
optimum to explore more optimal solution (Line 22).

The findBestRef function considers both the fitness function
and user feedback by Equation 8 to selects a best refactoring from
refCands. A candidate refactoring similar to an accepted refac-
toring (similarity is calculated by processing the difference between
refactoring types and elements involved) is more likely to be ac-
cepted/rejected again. For a candidate refactoring similar to m ap-
proved and n rejected refactorings, we calculate its value as:

Evaref = Fref × (1− α)m × (1 + β)n (8)

where Fref is the fitness value of the reflexion model after applying
the candidate refactoring, and α and β are predefined coefficients
between 0 and 1.

Example. For the Bus Monitor example, RN first detected four
refactoring opportunities from the source code: Extracting a class
from BusMonitor class, or Moving one of the three update*View()
method from BusMonitor to *View (* for Map, Table, or Curve) class.
Our algorithm chose one of the Move Method refactoring as the
first recommended step for the following reason:

Each update*View() in BusMonitor class invokes two methods in
*View class and it is invoked only once in BusMonitor class. Thus,
the Move Method refactoring will introduce one invocation while re-
moving two from BusMonitor class to *View class. Hence, it will
reduce the source contribution to the divergent dependency from
Monitor GUI module to Concrete View module from 2 to 1. By con-
trast, despite that Extract Class refactoring can remove an absence
dependency from Monitor GUI module to Bus Data module, it will
introduce one divergence dependency (with two source contribu-
tions) from Bus Data module to Concrete View module, increasing
the overall discrepancies.

In the second step, RN recommends another move refactoring
for the same reason. When calculating the third step, RN found
a new Pull Up Method refactoring opportunity, i.e., pulling up up-
dateMapView() method in MapView class and updateTableView() meth-
od in TableView class to a newly created abstract class in AbstractView
module. This step generates higher fitness value because the Move
Method refactoring can decrease the inconsistency only by 1, while
the Extract Class refactoring can decrease the inconsistency by 4 (2
for reduced absence dependency from Monitor GUI module to Bus
Data module and Abstract View module; while 2 for reduced source
contribution for divergence dependency from Monitor GUI module
to Concrete View module). Therefore, it is recommended as the third
step. After the fourth step (i.e., the Extract Class refactoring) is
chosen, RN cannot reduce more discrepancies, and the path with 4
steps (listed in Section 2) is completed.
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3.5 User Examination
Accepting user feedback is a key feature of RN. The user can ex-

amine every step in a recommended path, and decide to accept, ig-
nore, or reject any steps. Consider the 4-step path calculated above.
Even though RN recommended Pull Up Method refactoring as the
third step, it is more intuitive to move all three update*View() meth-
ods before the Pull Up Method refactoring. In this case, the user
may accept the first two steps, but reject the third one. The two
accepted steps will be executed and RN will start another round
of recommendation starting from step 3, referencing to user’s ac-
cepted and rejected refactorings by Algorithm 1 and Equation 8.

In the Bus Monitor example, given the two acceptances and one
rejection from the user, RN will recalculate the path as follows.
Assuming α and β are both 0.5, and RN needs to reevaluate Pull
Up Method versus Move Method. For the former, since a similar
move was rejected previously, its marginal increase of inconsis-
tency would be ∆Nstr = −4 × (1 − 0.5)1 × (1 + 0.5)0 = −2.
For the latter, since it is similar to two accepted refactorings, then
∆Nstr = −1× (1− 0.5)0 × (1 + 0.5)2 = −2.25. Therefore, the
Move Method was recommended.

3.6 Recommended Step Execution
When the user accepts a recommended step, RN will update the

source code and source model automatically, and generate a new
reflexion model. Note that the user can accept some, but not all
recommended steps, and ask RN to execute refactoring. In this
case, the tool will recheck the precondition of an accepted step be-
fore applying it. If the precondition is not satisfied, the tool asks
the user to regenerate the reflexion model.

4. EVALUATION
To evaluate the effectiveness of RN, we answer the following re-

search questions:
RQ1 (Productivity): Does RN help developers perform architec-
tural refactoring faster and more correctly?
RQ2 (Search-Contribution): What is the contribution of RN’s
search-based refactoring path recommendation and auto-refactor-
ing completion?
RQ3 (Feedback-Contribution): What is the contribution of the
user feedback loop?
RQ4 (Applicability): Is our approach applicable to real-world in-
dustrial projects?

To answer these questions, we use two complementary approach-
es: a controlled experiment and an industrial case study. We used
the controlled experiment to quantitatively compare the effort need-
ed to refactor towards a target design, and to analyze the respective
contributions of refactoring path recommendation and user feed-
back. To determine applicability, we used the real industrial project
to which we applied RN to reenact the architectural refactoring that
our industrial partner previously performed manually.

The controlled experiment is the only way to quantitatively and
precisely measure human effort and productivity, whereas the real
industrial project evaluates whether RN has the potential to be used
in real-world projects. As part of our significant effort of evalua-
tion, we hoped to find large-scale, architectural refactorings in open
source projects. However, after months of combing through the re-
vision history of a large number of open source projects used in
the corpus of an award-winning paper [34], we realized that large-
scale refactorings in open source projects involving dozens of files
are extremely rare. The number of files touched by most recorded
refactorings in [34] is smaller than those in the project we used in
our controlled experiment. Moreover, the major advantage of RN
is allowing the user to describe a target design, which appears to be

impossible to obtain from open source projects unless we are the
developers. Next we present our evaluation procedure and results.

4.1 Controlled Experiment
The purpose of our controlled experiment was to quantitatively

measure the effectiveness of RN, which consisted of two phases.
The first phase of our experiment was only designed to show that
the automatically generated reflexion model is good enough for the
user to start with. That is, the mapping of the source code does
not severely deviate from the target modular structure. The second
phase aimed to evaluate the main contributions of RN: 1) search-
based refactoring path recommendation with automatic completion
of refactoring steps, and 2) automatic navigation adjustment based
on user feedback.
Subject System. We chose the subject system from a class project
used in a software design course taught in both Fudan University
and Drexel University. Unlike most student projects, this one has
medium size; it is a questionnaire management system. Question-
naires come in two types: either a survey or a test with grades.
The project supports two types of users: the designer who creates a
questionnaire and the respondent who completes the questionnaire.

A designer can use the system to create, modify, save, load,
export, display, and print different types of questions, including
multiple choice questions, matching questions, ranking questions,
etc. For a test, the designer can also assign points and provide
correct answers. A respondent can use the system to complete
a given questionnaire, which the system can automatically grade
and/or tabulate. The system design should support easy extension
of new types of questions, and different ways to create, save, print,
and display the questionnaire. Students should carry out the de-
sign through the proper application of multiple design patterns, and
must implement the system in 10 weeks using Java.

As the creator of the student assignment, the third author of the
paper is well-aware of the best possible design for the system, and
provided an authoritative modular design as the target. We se-
lected one of the student submissions as the subject to be refactored.
This submission contains 21 classes, 2 interfaces, 203 methods, 44
fields, and 2,866 LOC. The source code of student submission can
be found at [3]. We chose this particular submission because it
represents typical design flaws, such as the violation of single re-
sponsibility principle and high coupling.

In our refactoring experiment, we chose to refactor the code im-
plementation of saving and loading of a questionnaire to and from
an XML file. This code involved 15 classes, one interface, 121
methods, 23 fields, and 1,010 LOC. As the fundamental part of the
system, the highly coupled source code in this submission made
it difficult to apply proper design patterns manually or support the
required extensions easily, such as adding new types of questions.

Figure 3 depicts the target design, which consists of five mod-
ules: IO, Abstract Question, Concrete Question, Abstract Answer, and
Concrete Answer. The classes in the Concrete Question module should
inherit the classes in the Abstract Question module; the classes in
the Concrete Answer module should inherit from classes in the Ab-
stract Answer module; the IO module can depend on the two abstract
modules, but not on the modules with concrete classes, other than
creating their instances.

From Figure 3, we see that the given implementation is inconsis-
tent with the desired design, as the IO module depends on several
methods of concrete question classes and concrete answer classes
(see the two divergence dependencies in dashed arrows). In this
case, the student author of the code was new to OO concepts: al-
though he employed abstract classes (e.g., Question) and interfaces
(e.g., Answer), he did not fully grasp how to leverage polymorphism
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to decouple dependencies among classes. Therefore, the inheri-
tance hierarchy in his code violated the Liskov Substitution Prin-
ciple [25]. More specifically, the IO class manipulated the internal
data structure of concrete question and answer classes, and took all
the responsibility of creating, modifying, loading, and saving these
classes, which created numerous divergence dependencies from the
IO module to Concrete Question and Concrete Answer modules. Thus,
the purpose of the refactoring is to decouple IO from concrete ques-
tion/answer classes.
Experiment Design We recruited 18 participants (two PhD stu-
dents, 12 master students, and four senior undergraduate students)
from the school of CS at Fudan University. Before the study, we
conducted a survey to investigate their backgrounds. Six of them
were experienced in refactoring, the other 12 were familiar with
OO design but had little experience in refactoring. Based on the
survey, we divided the 18 participants into two skill-equivalent gr-
oups, an experimental group (EG) and a control group (CG).

In order to evaluate the recommendation function of RN, the ex-
perimental group used all the features of RN. The control group
used a customized version without the recommendation function.
Moreover, the control group used JDeodorant [13, 21], which we
call JD for short, a state-of-the-art automatic refactoring tool to
identify refactoring opportunities by code smell detection, and to
complete atomic refactoring steps automatically so that the partici-
pants do not need to conduct the entire refactoring manually.

Before the experiment, we provided a 1.5-hour tutorial and an-
other 1.5-hour of practice for both groups to learn the concept and
function of reflexion model generation. In addition, the experimen-
tal group learned the refactoring recommendation function of RN,
and the control group learned JD. We also explained both the sub-
ject source code to be refactored and the target design to all the
participants. We demoed the functionalities of the system and ex-
plained the responsibility of each module in the target design.

Afterwards, we conducted the two phases of the controlled ex-
periment as follows. In the first phase, to test the reflexion model
generation function, all the participants were provided with the tar-
get design as shown in Figure 3. After that, each participant pro-
vided a module description and ran the automatic mapping function
of RN to generate a reflexion model accordingly. We then collected
the module descriptions and evaluated the accuracy of the automat-
ically generated clusterings.

In the second phase, all the participants were given the same, cor-
rect mappings so that they have the same starting point to refactor.
They were asked to refactor the subject system towards the target
design, and we recorded the time spent to complete the refactoring.
We designed a test suite consisting of 50 test cases to test behavior
preservation after refactoring, so that we can evaluate the accuracy
together with efficiency.

All the participants were asked to run a full-screen recorder dur-
ing the experiment, which enabled us to analyze the behaviors of

each participant after the experiment. We also added behavioral
monitors to the tool, to monitor and record the participants’ be-
haviors (e.g., accepting/rejecting recommendations). Based on our
initial analysis of their behaviors, we interviewed some of the par-
ticipants to get more accurate explanations about their behaviors.
A video of how a EG participant performed refactoring using RN
is available at [4].

In the experiment, the GA-based mapping process of RN was
configured as: w1 = 0.5, w2 = 0.5, Ngen = 500, Npop = 50,
Pcrossover = 0.5, Pmutation = 0.01. The search-based recom-
mendation process was configured with the following parameters:
descNum = 5, Tref_sim = 0.6, α = 0.2, β = 0.2.

Phase 1: Reflexion Model Generation. We evaluated the accu-
racy of the automatic mapping by comparing it with the author-
itative mapping provided by the authors, which is calculated as
|Classc|/|Classt|. Classc represents the set of classes/interfaces
correctly mapped to corresponding modules and Classt represents
the set of all the classes/interfaces.

Of the 18 participants, 4 of them mapped all the classes/inter-
faces correctly to the target modules, and 12 participants only in-
correctly mapped one or two classes/interfaces. The mean value
of the accuracy is 0.913, the first quartile is 0.875, the median is
0.938, and the third quartile is 0.969, indicating most students can
use RN to obtain a reasonably correct mapping. There was one
outlier with a low accuracy of 0.625, caused by vague module de-
scriptions specified by the participant. For the Concrete Question and
Concrete Answer modules, she just described them as “question” and
“answer” respectively.

Phase 2: Refactoring Navigation. The second phase of the
experiment evaluates the main contributions of RN w.r.t. produc-
tivity, and the contribution of the refactoring path recommendation
and feedback loop to overall success.
RQ1: Productivity Results.

Table 1 shows the results of the two groups in terms of com-
pletion time in the second phase (Time), the number of remain-
ing inconsistencies (#INC), the number of passed test cases (#TC),
the number of times applying automatic refactoring (#AR), and the
lines of code manually edited (ELOC). The table also shows all the
participants eliminated all the inconsistencies between the target
and original modular structure. More data can be found at [2].

Table 1: Productivity of the Experimental Group (EG)
Par(EG) Time(m) #INC #TC #AR ELOC Par(CG) Time(m) #INC #TC #AR #ELOC

P1 16.617 0 50 12 11 P10 45.017 0 28 0 461
P2 11.717 0 50 12 5 P11 97.600 0 43 0 421
P3 8.033 0 50 12 5 P12 72.150 0 31 0 349
P4 7.583 0 50 12 5 P13 32.717 0 28 0 484
P5 10.333 0 50 12 5 P14 42.733 0 38 10 390
P6 9.300 0 50 12 5 P15 46.767 0 29 0 62
P7 13.350 0 50 12 5 P16 38.433 0 50 1 219
P8 31.317 0 50 12 5 P17 80.733 0 31 3 395
P9 11.183 0 50 12 5 P18 71.417 0 50 1 406

Avg 13.270 0 50 12 6.0 Avg 58.619 0 36.44 1.667 354.1
SD 6.895 0 0 0 1.9 SD 21.113 0 8.63 3.091 119.2

The table clearly shows that, on average, the experimental group
accomplished the refactoring task much faster—13.270m (EG) vs.
58.619m (CG), and more accurately—all 50 (EG) vs. 36.44 (CG)
test cases were passed, and with much less effort—6.0 LOC (EG)
vs. 354.1 LOC (CG). We applied Wilcoxon’s matched-pairs signed-
ranked test, which also shows that the difference is statistically sig-
nificant both in terms of time (p=0.008) and the number of test
cases (p=0.018).

To understand why only 2 out of 9 CG participants passed all
the test cases, we analyzed their refactored programs, and observed
various mistakes in different places. For example, some partici-
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pants in the control group forcefully modified the code to remove
structural inconsistency, but ignored the need to preserve code be-
haviors. Therefore, their submitted code failed many test cases,
even though it reached the target design. Due to the lack of refac-
toring navigation, the participants in the control group were more
likely to make incorrect or incomplete refactorings.
RQ2: Contribution of Automatic Path Recommendation.

To investigate the impact of this feature on performance im-
provement, in addition to the number of auto-refactoring applied
(#AR) in Table 1, we also collected the following data (Table 2)
from the screen captures:

Table 2: Behavioral Statistics of the Two Groups
EG #Ite #CSC #CkD CG #CRM #CSD #CkD
P1 6 3 11 P10 4 1 5
P2 8 14 1 P11 38 2 144
P3 8 12 6 P12 14 8 36
P4 6 3 5 P13 4 3 3
P5 8 11 3 P14 8 15 43
P6 5 3 3 P15 5 5 57
P7 3 3 3 P16 15 3 77
P8 4 2 9 P17 4 5 14
P9 5 8 2 P18 23 3 70

Avg 5.89 6.56 4.78 Avg 12.78 5.00 49.89
SD 1.73 4.45 3.15 SD 10.86 4.03 41.88

From EG, we collected the number of iterations (#Ite)—the num-
ber of times the user provided feedback and RN recalculated a
“path” (i.e., a series of refactoring steps), the number of times they
checked the source code (#CSC) — which indicates the RN did
not provide sufficient information so the student had to check the
source code — , and the number of times they used the checking
dependency function of RN (#CkD).

From CG, we collected the number of times they checked the
reflexion model (#CRM) to update the divergence/convergence af-
ter the code was changed, the number of times they used the code
smell detection function of JD (#CSD), as well as the number of
times they used the checking dependency function of RN (#CkD).
We did not collect #CSC for CG because they worked with source
code all the time.

These data reveals the following facts: The EG participants used
the automatic refactoring function more often: each EG member
applied 12 auto-refactoring of RN (i.e., accepted recommended re-
factoring steps 12 times), while 5 out of the 9 CG members never
used the auto-refactoring provided by JD, and they refactored by
manually going through hundreds of LOC. P14 is an exception,
who executed 10 automatic refactorings and edited 390 lines of
code. Her video record and program revealed that most of the au-
tomatic refactorings she executed are incorrect and she manually
edited a lot of code to correct the refactorings.

More interestingly, we observed that in the last few steps of
the refactoring, the participants in EG manually edited the code to
eliminate the divergent dependency from the IO module to the Con-
crete Answer module. The recommended refactorings could elimi-
nate the majority of code dependencies from IO to Concrete Answer,
but there remained five type references to concrete answer classes,
which could not be eliminated automatically. The only way to re-
move the discrepancy was to manually replace the remaining con-
crete class references with the abstract answer class. In this study,
the participants in the experimental group check code with the sup-
port of the examining dependency functionality provided by RN,
and slightly modified the code to complete the task. As we will
demonstrate in our industrial case study, in some design-level refac-
toring, human intervention is inevitable. Nevertheless, this extra ef-
fort is minor: the EG members only edited (including moving) 5 to
11 lines of code to complement the auto-refactorings. By contrast,

the CG group edited 354.1 LOC on average.
The participants in the experimental group used 3 to 8 iterations

to accomplish all 12 refactorings. Some participants were more
aggressive and accepted most of the recommended refactorings for
fewer iterations, while others were more cautious and only accepted
few recommended refactorings and expected improvements in ac-
curacy after RN learned from them. They checked source depen-
dencies behind a divergence much less frequently than CG (4.78 vs.
49.89 times on average). Surprisingly, none of them ever rejected
recommended refactorings. They ignored more often than rejected,
even when they thought a recommended refactoring was incorrect.
Our post-study interviews indicate a tendency to provide positive
rather than negative feedback. Thus, RN may not recommend a re-
jected refactoring anymore. Giving no feedback on those “unsure”
refactoring steps would leave more choices for next iterations.

The participants in the control group checked updated reflexion
models between 4 and 38 times to examine the consistency be-
tween the desired structure and the source model. They used code
smell detection provided by JD from 1 to 15 times, but seldom ap-
plied corresponding automatic refactorings (see the #AR column
in Table 1). In the post-study interviews, the CG participants men-
tioned that JD reported a lot of refactoring opportunities in terms
of code smells (e.g., God Class and Feature Envy), but many of
them did not lead towards the target design. As a result, they soon
felt overwhelmed and believed that checking source code was more
straightforward and effective, and they checked source dependen-
cies frequently, 50 times on average.

This checking process was usually inefficient, as there could be
many code dependencies corresponding to a convergence or diver-
gence dependency. For example, there are more than 20 method
calls from IO to Concrete Question in the original source code. More-
over, there is no automatic way to check the absence of dependen-
cies, so they have to explore their own path to reach the target,
and deal with various problems, such as compilation errors. This
explains why they needed more time and had more mistakes. In
summary, the auto-refactoring and recommendation functions of
RN contributed significantly to improvements in productivity.
RQ3: Contribution of User Feedback.

To evaluate the impact of user feedback, we compared the results
obtained with and without user feedback. The participants in the
experimental group provided similar feedback. We chose the most
representative one for comparison. We produce the refactoring re-
sults without user feedback by running RN on the subject system
and simply accepting all the recommended refactorings in order.

In the final refactored code with user feedback, one divergence
dependency remains, from IO to the Concrete Answer module. As
mentioned above, the dependency is caused by five type references
to concrete answer classes in the code, and is easy to eliminate.

In the code refactored without user feedback, there is one diver-
gence dependency and one absent dependency, corresponding to 13
dependencies in the code, including 12 method invocations from
the IO class to concrete question classes, and one absent creation
dependency, suffering from code tangling and poor design.

The above analysis shows a significant improvement in refactor-
ing recommendation of RN after learning from user feedback.

4.2 An Industrial Case Study (RQ4)
Our research was motivated by a real industrial project which

had severe maintenance problems. Two years ago we proposed a
refactoring strategy, which was executed, but not by the authors.
The refactoring process was difficult and time consuming due to
the lack of description of the target design and proper tool support.
The process took several weeks and its difficulty motivated our RN.
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In order to evaluate how RN could have helped the architectural
refactoring activity, we managed to retrieve the original source code
after obtaining the permission of our collaborator (whose name has
to remain anonymous). After that we drew the target design using
RN, and evaluated whether RN can automate the refactoring that
was conducted manually. Concretely, we investigate whether it is
possible to fully refactor the original source code and completely
replicate the manual refactoring. If not, to what extent can RN au-
tomate the process, and how much effort does it take to apply RN
compared to the original manual refactoring. Next we introduce the
basic characteristics of the subject projects. After that, we describe
our refactoring process and the results.

For proprietary reasons, we call it Project X and changed all the
sensitive names used in the project into animal names. Project X
evolved for 8 years, and contains over 40K LOC, 148 classes, and
was maintained by 4 developers. The main function of the system
is to monitor data variation collected continuously in real time.

Since the project experienced years of evolution, many functions
were added on demand without a proper consideration of the over-
all architecture. By the time we visited the company last year, the
system was impossible to maintain: adding any new feature or fix-
ing a bug would incur unexpected changes to many files. Although
the project does not appear to contain large number of classes,
many files are fairly long with more than 1,500 lines of code, indi-
cating the existence of many God classes.

The system needs to monitor multiple types of data, and display
them in different ways and in different views. The operation on one
view can influence the display on other views, making the system
highly coupled. The scope for refactoring involves 8 classes albeit
5,823 LOC, which typically suffered from the aforementioned de-
sign flaws, i.e., God class (i.e., Main class) and entangling depen-
dencies between views (i.e., TreeView, TableView, and MapView),
which almost form a complete graph. The entry class, Main.java,
was responsible for a large number of business logic, such as user
login, report generation, etc. It took us 3 days to understand the
different relations among the code logic, and separate them from
this God Class. Retrospectively, this is a typical problem where a
model-view-controller pattern should apply.

Refactoring Replayed using RN. After retrieving the original
source code, we drew the target design, and generated the reflexion
model using RN. As shown in Figure 4, each class is treated as a
module in the target design.

Language Settings

LanguageDialog

Data Filter

FilterDialog

User Login

Report Generation

Main

Main

DBOperation

DBOperation

MainFrame

MainFrame

Abstract View

Tree View

TreeView

Table View

TableView

Map View

MapView

Figure 4: The Reflexion Model before Auto-Refactoring

The target design follows three principles: 1) Separated Con-
cerns: Different business logics, such as user login and report gen-
eration, should be separated from Main class, and new classes shou-
ld be created for each of them, i.e., the empty User Login and Re-
port Generation modules shown in Figure 4. 2) Simplified Entry
Class: the entry class, Main, should not depend on the DBOpera-
tion module in any form. 3) Abstraction and Modularization: dif-
ferent views should have no dependencies among themselves. The
container class, MainFrame.java should only create concrete view
objects, but does not have other dependencies on them. In order to
achieve this, the commonality of views should be abstracted.

The reflexion model shown in Figure 4 reveals the severe dis-
crepancies between the original source code and the target design:
there are 3 missing modules, 7 absence dependencies (dotted lines),
and 11 divergence dependencies (dashed lines).

Next we applied RN to navigate the architectural refactoring. At
first, RN presented a path with 8 steps. The first step suggested
pulling up the highlightAnimal() methods in TreeView, TableView,
and MapView into a newly created interface. This step is generally
correct, but we prefer using an abstract class for the sake of reuse.
Therefore, we rejected this step and asked RN to make a second
recommendation. The tool then suggested a new path, also contain-
ing 8 steps, with the first step of pulling up the highlightAnimal()
methods to a newly created abstract class.

RN then suggested the following steps: move several methods
(e.g., refreshData()) from MainFrame to TreeView, TableView, and
MapView to alleviate the divergence dependencies from MainFrame
to these views, pull up common methods (e.g., clearAnimals()) in
different views to the newly created abstract view, and extract dif-
ferent business logic (e.g., user-login) into new classes. Each step
aims at improving the consistency of the reflexion model showed in
Figure 4. In this case, we accepted all suggested steps, and obtained
a reflexion model showed in Figure 5.
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Figure 5: The Reflexion Model after Auto-Refactoring

Figure 5 shows that most divergence dependencies are removed
and all the absence dependencies are satisfied, except 3 remaining
divergence dependencies from MainFrame to the other three views.
The cause of the remaining divergence is the constructor of Main-
Frame, shown in Listing 1. Originally, each view kept two attributes
of the other two views, e.g., TreeView contains a TableView and a
MapView, and MainFrame initializes them in its constructor.

After extracting this commonality among all the views into the
abstract class, the AbstractView refers to the same view type. How-
ever, the field access dependencies from MainFrame to the other
three views still remain. Such dependencies cannot be eliminated
by either moving a method, pulling up a method, or extracting
a class, thus, RN could not fully recover the refactoring. In this
case, we manually created a list, containing a collection of views,
and made the list an attribute of the AbstractView class. Then we
removed the concrete object instantiation from the constructor of
MainFrame. Thus, all the divergence dependencies were removed.

Listing 1: Code for Unsolved Divergence
public MainView() {

...
treeView.tableView = tableView;
treeView.mapView = mapView;
tableView.treeView = treeView;
tableView.mapView = mapView;
mapView.treeView = treeView;
mapView.tableView = tableView;
...

}

This case study similarly reveals the limitations of push-button,
fully automatic refactoring at the architecture/design level: given
the needs of creating complex data structures or further abstrac-
tion, human intervention is inevitable. Nevertheless, a great deal of
manual effort was saved due to RN’s automated processes. It saved
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us from going through messy God Classes where we spent most of
our time during the manual refactoring process.

5. THREATS TO VALIDITY
The major threat is that we only used two subject systems: one

for the controlled experiment and one for the case study. Our ap-
proach might not generalize to larger systems from other domains.

In our controlled experiment, the subject is not large, and the
participants are students, rather than professional developers. The
result may change otherwise. Other threats include that the two
“equivalent” groups may not be truly equivalent, and the test suites
used may not cover all aspects of the program behaviors. Finally,
we only conducted one experiment with a Java program as the sub-
ject system. It is not clear if the results apply to systems written in
other programming languages, or if the results may differ if more
experiments are conducted.

In our industrial case study, we only reenacted the refactoring
with RN on the project which was refactored manually two years
ago. We cannot claim that the same results can be achieved for
other legacy systems. RN currently only supports three atomic
refactorings. Even though they appear to be sufficient for this case
study, other systems may require different atomic refactorings.

In both evaluations, we assume that the users of RN have suffi-
cient domain knowledge and are able to draw a reasonable Target
Model, just like the users of existing reflexion tools. As we men-
tioned before, the impact of target model quality to RN is similar to
the impact of destination input quality to a GPS. Further evaluation
of the impact of target model quality, as well as the impact of user
experience are important for our future work.

6. LIMITATIONS AND FUTURE WORK
Currently, RN only supports three atomic refactorings: Move

Method, Extract Class, and Pull Up Field/Method. This limits the
capability of our refactoring recommendation. We designed RN to
be extensible, and will add new types of atomic refactorings.

In addition, RN only supports three dependency types to describe
the target design. Our future reflexion model will be more expres-
sive, e.g., differentiating different types of modules in target de-
sign and extending new dependency types. For example, the user
should be able to differentiate UI modules, business logic modules,
and data modules in the target design. Correspondingly, more spe-
cific dependency types such as asynchronous communication will
be defined. We consider extending the domain-specific module and
dependency types according to the characteristics of different sys-
tems, such as Web systems and Android apps.

7. RELATED WORK
Refactoring opportunity identification. Researchers have pro-

posed various automatic approaches for identifying refactoring op-
portunities to ease adaption and extension [29]. Simon et al. [41]
used distance-based cohesion metric to identify code smells and
propose refactoring actions such as Move Method/Attribute and
Extract/Inline Class. Tourwé and Mens [45] proposed an approach
that uses logic meta programming to formally specify and detect
code smells, and to identify refactoring opportunities. Bavota et
al. [10] proposed an approach for recommending Move Method
refactorings via relational topic models. Sales et al. [39] proposed
a technique to recommend Move Method refactoring via static de-
pendencies. Tsantalis et al. [46] proposed an approach for identi-
fying Move Method refactoring opportunities with the objective of
solving Feature Envy code smells. Bavota et al. [7–9] proposed a
series of techniques for identifying Extract Class opportunities.

Our approach differs in our aim to refactor towards a target struc-
ture at a higher-level, whereas these techniques can be integrated
into RN to identify atomic candidate refactorings.

Reflexion models. Murphy et al. [32] introduced software re-
flexion models, which can be used to support a variety of soft-
ware engineering tasks, such as design conformance checking [38],
reengineering [33], and consolidating software variants into prod-
uct lines [24]. Reflexion models in these approaches reveal incon-
sistencies between high-level model and implementation, but pro-
vide no explicit recommendations to help developers decide how to
eliminate the inconsistencies. In contrast, our approach starts from
reflexion models, then fills all the essential gaps in order to produce
code that adheres to the desired design.

Design-level refactoring. Moghadam et al. [31] proposed an
automatic technique to refactor the source code towards a target
UML-based design with a design differencing technique. Terra et
al. [42, 43] proposed an architectural repair recommendation sys-
tem that can recommend refactorings to remove architectural vio-
lations based on predefined rules. In contrast, our approach rec-
ommends refactorings using search-based algorithms and supports
user interaction and feedback.

Search-based refactoring. Previous approaches [19, 30, 36, 37,
40] used search algorithms to find an optimal refactoring solution
for a system, with the goal of maximizing the fitness function de-
fined by a set of design metrics. Therefore, the improved design
structure after refactoring may not confirm to the desired structure
the developer has in mind, or the required structure previously spec-
ified. In addition, these approaches do not support user interaction
or take user feedback into consideration.

Recently, some researchers propose to incorporate user feedback
in automatic refactoring approaches. Liu et al. [26] proposed a
monitor-based instant refactoring framework, which can use feed-
back to optimize code smell detection algorithms. Hall et al. [18]
proposed an approach that enables the user to refine the refactor-
ing results produced by unsupervised learning approaches. Bavota
et al. [6] proposed an approach that uses interactive genetic algo-
rithms to integrate developers’ knowledge in refactoring tasks. Al-
though these approaches involve interactive feedback, the refactor-
ing is still driven by code smell detection or design metrics and,
unlike RN, these approaches do not steer the solution towards the
high-level design goals that a user has in mind.

8. CONCLUSIONS
We present RN, an interactive refactoring navigation system. It

calculates a reflexion model to reveal the discrepancies between
the target design and the given source code, recommends stepwise
refactoring path toward the target design, and takes user feedback
into consideration. We first evaluated the effectiveness of the ap-
proach with a controlled experiment involving 18 students. The re-
sults show that RN helps developers perform their refactoring tasks
more effectively and efficiently. Our industrial case study further
suggests its potential to help with architectural refactoring in prac-
tice In the future, we will support other atomic refactorings and
conduct more industrial case studies.
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