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Abstract—In this paper, we propose an approach to detecting
project-specific recurring designs in code base and abstracting
them into design templates as reuse opportunities. The mined
templates allow programmers to make further customization
for generating new code. The generated code involves the code
skeleton of recurring design as well as the semi-implemented
code bodies annotated with comments to remind programmers
of necessary modification. We implemented our approach as an
Eclipse plugin called MICoDe. We evaluated our approach with
a reuse simulation experiment and a user study involving 16
participants. The results of our simulation experiment on 10 open
source Java projects show that, to create a new similar feature
with a design template, (1) on average 69% of the elements in
the template can be reused and (2) on average 60% code of
the new feature can be adopted from the template. Our user
study further shows that, compared to the participants adopting
the copy-paste-modify strategy, the ones using MICoDe are more
effective to understand a big design picture and more efficient
to accomplish the code reuse task.

I. INTRODUCTION

Programmers usually adopt copy-paste-modify practice
when implementing similar features [1]. Once a feature in-
volves several related classes, methods or fields, such practice
causes more a design duplication than several pieces of dupli-
cated code. Empirical studies have shown that design duplica-
tion often occurs among classes, packages, and subsystems [2].

Recurring (or duplicated) designs usually indicate project-
specific programming conventions and future reuse opportu-
nities. Programmers can efficiently implement a new similar
feature if they are aware of a general skeleton of related
recurring designs. However, such recurring designs are usually
implicit and undocumented, and the programmers usually have
to reinvent the wheel without knowing the potential reuse
opportunities [1]. Moreover, even if the programmers discover
such reuse opportunities, copy-paste-modify practice is hardly
a sound and systematic approach for reuse [3].

Many approaches [4], [5], [6] have been proposed to extract
recurring designs based on code clone. Basit et al. [4], [5]
first proposed to extract structural clone as recurring design.
Structural clone is extracted from simple cloned code with
frequent item set mining technique [7]. They are reported as
a set of files/modules sharing multiple clone sets!. Following
their work, Qian et al. [6] proposed a technique to detect logic

1a clone set consists of multiple pieces of duplicated code.
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clone, which aims to capture similar business logics by code
clone. Their logic clone is described as a graph in which a
node represents a set of methods sharing code clones and an
edge represents “abstract” invocation between the method sets.
Potentially useful as the above approaches are, they still suffer
from some insufficiencies for practical reuse tasks. First, they
cannot describe a sophisticated design in practice for missing
important concepts such as interface, class, association, etc.
Second, these techniques are designed for comprehension,
their reported designs cannot facilitate actionable code reuse
tasks in an explicit way.

Alternatively, reverse SPL (Software Product Line) engi-
neering techniques [8], [9], [10], [11], [12] have good potential
to meet the reuse need. Fisher et al. [8] and Martinez et
al. [9] proposed different techniques to recover a generalized
software product line model from a set of software variants.
However, the challenges to adopt their approaches lie in
two-fold. First, these approaches assume the variant products
as its input. However, in our case, the code for ‘“variant
design” is unknown in advance. Second, these approaches
extract SPL. model in the grain of component or product (e.g.,
feature model [13]) while we need the recurring designs to
be extracted on the finer level (e.g., class and method) for
facilitating actionable code reuse tasks.

In this paper, we propose an approach to detecting and
extracting recurring designs in code base into a list of design
templates to facilitate template-based code generation. In our
approach, we first identify each set of “correspondent” pro-
gram elements across the code base into a program multiset.
Then, we construct a graph by building various relations (e.g.,
declare, invoke, etc.) between program multisets. Finally, we
heuristically split such a graph into a set of subgraphs, each
of which is abstracted into a design template. As a result,
each design template captures various types of object-oriented
program elements (and their relations) and can be visualized in
the form of UML class diagram (some extracted templates can
be checked at our website [14]). Programmers can manage the
design templates and customize them to generate code skeleton
for the reusable features. The generated code skeleton contains
semi-implemented code that is annotated with hints and com-
ments to remind programmers of necessary modification.

We implemented our approach as an Eclipse plugin called
MICoDe (Mining Implicit Code Design). We evaluated our
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Fig. 1. A Recurring Design in JHotDraw Projects

approach with a reuse simulation experiment and a user study
involving 16 participants. The results of our simulation exper-
iment on 10 open source Java projects show that, for creating
a new similar feature with a design template, (1) on average
69% of the elements in the template can be reused and (2) on
average 60% code of the new feature can be adopted from the
template. Our user study further shows that, compared to the
participants adopting the copy-paste-modify strategy, the ones
using MICoDe are more effective to understand a big design
picture and more efficient to accomplish the code reuse task.

The contributions of this paper are listed as follows. First,
we propose an approach to detecting and extracting recur-
ring design from code base as design templates and support
template-based code generation; Second, we implement an
Eclipse plugin MICoDe for practical use of our approach
(The tool, demo video, and snapshots are now published
at [14]); Third, we evaluate our approach with both simulation
experiment and a user study to reveal the effectiveness of our
approach. The results show that the extracted design templates
are both accurate and practical for code reuse task.

II. MOTIVATING EXAMPLE

Fig. 1 shows a design recurring in the JHotdraw7.1
project [15], a drawing framework for Java language. All the
designs showed in Fig. 1 aim to create a customized drawing
application according to project convention. According to
Fig. 1, when programmers intend to create a new drawing
application, they need to (1) construct several Java classes
(e.g., class Main and *Factory), (2) make some of them
inherit existing class (e.g., class *ApplicationModel and
xView), and (3) make them cooperate with each other by1
implementing various methods. If we do not know such
recurring designs in Fig. 1 in code base, creating a customized
application is effort-consuming.

Nevertheless, it is still a non-trivial task even when we know
these recurring designs. One straightforward way is to copy
all the code of one design (e.g., Draw Project) and modify
it to satisfy our own need. However, we have to address the
following challenges:

Q1: What are the code files to copy? Apart from the classes
shown in Fig. 1, each application involves other classes (not
shown in Fig. 1). Without a big picture of how the code is
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organized, we may either miss-copy some code files or copy
additional unnecessary code files.

Q2: Which design shall we copy? Intrinsically, we can
copy the most “similar” design as the draft code to save the
follow-up customization effort. However, it is hard to know the
similarity unless we go through all the code of those designs.
Q3: What parts of design do we need to customize? Even
if we have copied the most similar design, we still need
to consistently customize the copied classes. For example,
after copying Draw project in Fig. 1, we have to consistently
customize our own ApplicationModel class, View class,
etc. Moreover, we may also need to remove the irrelevant
classes, or check other designs to integrate their relevant code.
Q4: How do we customize the code? Table I shows the
method body of init () methods of class DrawView,
PertView, and NetView in Fig. 1. Their differences are
very helpful hints for code customization. Suppose we copy
and modify the Draw project, it is easy to miss modifying
the DrawFactory (line 7) into a customized factory class
or miss setting scale factor (line 8) when necessary, which
leads to bugs. Nevertheless, comparing across code in multiple
designs takes tremendous effort, if not impossible.

TABLE I
CORRESPONDING INIT() METHODS IN JHOTDRAW PROJECT
DrawView. java PertView.java: NetView. java:

void init() {
super. init ()

void init() {
super. init()

void init() {
super. init ()

setEditor (new
DrawEditor())

view. setFactory (new
NetFactory())

setScaleFactor (1.0)

=

setEditor (new
DrawEditor())

view . setFactory (new
PertFactory())

setScaleFactor(2.0)

=

setEditor (new
DrawEditor())

view . setFactory (new
DrawFigFactory())

=

In order to customize our own design with regard to existing
program convention, we usually need to understand the general
design structure, take different existing implementations as
reference, and be aware of their differences as potential cus-
tomization points. The copy-paste-modify practice can hardly
meet this end.

We propose MICoDe, a tool-supported approach which can
both detect and summarize the recurring designs in Fig. 1 into
a design template. The template is visualized as a UML class
diagram (sample snapshots are available at our website [14]),
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which captures the structural commonalities of the instances of
the recurring design. MICoDe supports further customization
on the template to generate both code skeleton and the
method body. The generated method bodies are annotated with
comments to indicate what modification could be adopted.

III. APPROACH

Figure 2 shows an overview of our approach. Our approach
takes the source code of a code base as input, and generates
customizable design templates as output. The design templates
can be instantiated and customized to generate code skeletons.

1. Reverse- Program 2. Determining
engineering Model Correspondence
Multiset 3. Connecting Program
Clusters Multisets Multisets
" -
| 4. Abstracting
Design

Code
Skeleton
and Body

[ ———

—_—— e — — —

5. Customizing
Template and
Generating Code

Fig. 2. Approach Overview

Given the source code, we first reverse-engineer it into
a program model, which captures various program elements
(e.g., class and method) and their relations (e.g., declare
and invoke). Second, we identify “corresponding” program
elements by clustering technique. We regard each set of
corresponding program elements as a program multiset. Third,
we build the relation (e.g., declare and invoke) among the
program multisets so that they can be connected into a graph.
Then, we heuristically split subgraphs of connected program
multisets into a set of multiset clusters as potential designs.
Fourth, we abstract each multiset cluster into design templates.
Finally, the generated design templates will be manifested
as UML class diagrams, and programmers can manage the
templates and customize them to generate code skeleton and
body. In the following, we present the details of each step.

A. Reverse Engineering

We reverse-engineer the source code of a code base into
a program model consisting of program elements and their
relations. Fig. 3 shows the meta model of program model,
which describes the program elements (i.e., class, interface,
method and field) and their relations (i.e., declare, extend,
implement, invoke, and access). Each program element in the
model is attached with its inherent program attributes. For
example, a method program element will be attached with the
attributes such as method name, return type, and parameters.
Moreover, each mined design template is also represented as
a program model.

B. Determining Correspondences

We determine corresponding program elements in order to
identify the program elements playing the similar role in each
instance of a recurring design. For example, in Fig. 1, the

Member | declare 1 Type
—invoke extend-} extend
y * 1 1|_
1
Field Method 1 . r Class Interface "

: Laccess—ll declarlJ 1I—implementj :

Fig. 3. The Meta Model of Program Model

three classes, i.e., DrawView, NetView, and PertView,
are considered as corresponding elements. We call a set of
corresponding program elements as a program multiset. In
order to generate a set of program multisets from the program
model, we first construct a declaration tree over the model
based on the declare relation defined in our meta model (see
Fig. 3). In a declaration tree, each node represents an entity
in the meta model and the parent-child relation represents a
declare relation in the meta model. For example, a class can
declare fields, methods and inner classes, and the inner class
can further declare its fields, methods and sub inner classes.

The correspondence of program elements is determined in
a top-down manner. We first determine correspondences of
top-level program elements (i.e., type) as multisets. Next, for
each of multiset, we correspond the declaration children of its
elements to form new multisets in the next level.

1) Corresponding Top-Level Elements: We determine the
correspondences of the top-level program elements by clus-
tering them with regard to code similarity and heuristic rules.
We adopt the hierarchical clustering strategy with complete
linkage [16] to cluster all the top-level classes and interfaces.

a) Similarity: The similarity between two types (class
or interface) is defined in terms of type name, shared super
types, and type body, i.e., sim = > (w; - sim;), in which ¢ €
{name, superType, body}. Wname, WsuperTypes Whody IEP-
resents respective weight for the three factors, which requires:

¢ Wname + WsyperType + Whody = 1

® Wname> WsuperTypes Whody € (07 1)
The similarity of type name, super types, and type body is
computed as follows. The type name of t; and ¢ is split
into token sequences ts; and tse according to some program
convention (e.g., camel convention). Let len; and lensy be the
length of ts; and tso, and let len;.s; be the length of the
longest common subsequence of ¢s; and ¢sy. Name similarity
is $iMpame = 2 X leng.s/(leny +lensy). Let sty and sty be the
set of super types of the type t; and t,. Super type similarity
is the Jaccard coefficient of the two sets of super types, i.e.,
SiMguperType = |St1 () sta|/ |st1|J sta|. Type bodies of the
two types are compared at the textual level. Let len; and lens
be the length of the two source code token sequences, and let
len. be the length of their shared cloned code, source code
similarity is simpody = 2 x len./(len; + lens).

b) Heuristics: Similarity sometimes is not sufficient to

ensure a correspondence relation. Thus, we enforce the fol-
lowing heuristic rules to improve the accuracy:

o The similarity between a class and an interface is 0.
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o The similarity between a type and its super type is O.

As a result, we can obtain some clusters such as {Draw-
View, PertView, NetView} and {DrawApplication-
Model, PertApplicationModel, NetApplication—
Model}. We regard each cluster as a top-level multiset.

2) Recursively Generating New Multisets: Given a multiset,
ms = {e1,ea,...,ent(n > 2), we generate new multisets
from the declaration children of ¢;(1 < i < m) so that
each e; contributes at most one declaration child to a new
multiset. The recursive process stops when the new gen-
erated multiset has no declaration children. For the exam-
ple in Fig. 1, given the multiset class_set = {DrawView,
PertView, NetView}, we determine the correspondence
of the declaration children of elements in class_set, i.e.,
their inner classes, methods, and fields. When we generate
a new multiset in which each element is an inner class, we
will further determine the correspondence of the declaration
children of its elements. When we generate a new multiset
in which each element is method (e.g., {DrawView.init(),
PertView.init(), NetView.init()}), the recursive pro-
cess stops as the init() methods have no declaration child.
The same case applies for the multiset of fields.

Algorithm 1 Corresponding Children

Require: a multiset set, entity similarity threshold sy,
Ensure: a set of multisets M S Set
1: dcSet <+ retrieve declaration children sets of set;
2: MSSet + 0;
3: for each set of declaration children dc € dcSet do

4: for each not-yet-corresponded element e € dc do
5: ms < 0;

6: add e to ms;

7: candSet < dcSet \ {dc};

8: while candSet # () do

9: find a not-yet-corresponded element e, € cand (cand € candSet)

with maximum sim(e., ms)

10: if sim(ec, ms) < tgim then

11: break;

12: end if

13: add e. to ms;

14: candSet < candSet \ {cand};

15: end while
16: mark all nodes in ms as corresponded;

17: if [ms| > 2 then M.SSet.add(ms);

18: end for

19: end for

20: return M SSet;

Algorithm 1 shows the details of corresponding the declara-
tion children of elements in a given multiset set with threshold
tsim. In Algorithm 1, we mark an element as “corresponded”
if it has been used to form a new multiset. We first construct a
set deSet = {e|e is a set of declaration children of an element
(i.e., type) in set} (line 1). Then we iteratively process each
dc in dcSet (line 3). We start with processing each declaration
child e € dc. If e has not been used to generate any multiset
(i.e., not-yet-corresponded), we add it as a seed entity to an
empty multiset ms (line 5-6). Then, we try to add declaration
children from the rest sets candSet (dcSet \ {dc}) to ms.

For each set cand € candSet, we attempt to find the most
similar child e, € cand to ms (line 8-15). If the similarity
between e. and ms (i.e., sim(e.,ms) at line 10) is above
the threshold, we add it into ms. The similarity between a

candidate element and elements in the multiset sim(e., ms)
is computed as the average similarity of e. and each entity
e € ms, i.e.,

ZeEms Sim(ecv 6)

|ms|

sim(e., ms) = (D
Finally, we return all the multisets containing at least two
elements (line 17).

C. Connecting Multisets

Given multisets of corresponding program elements, we
connect the multisets by the relations of program elements
across multisets. We regard each set of connected multisets as
a potential design for abstracting design template. First, we
build the relations (i.e., declare, invoke, access, extend, and
implement, see Section III-A) between multisets. Second, we
form a graph of multisets and detect its connected components
as potential designs. Finally, we refine the results with frequent
item mining technique [17].

1) Determining Multisets Relations: We determine the re-
lations of two multisets with regard to the relations in meta
model. Let MS; and MS; be two multisets of program
elements. Let rel; be a type of relations from an element
es € MS, to another element e; € M S;. Then, M S, MS;,
and all the relations of type rel; from M S to M.S; can form
a bipartite graph Gy; = (MSs, M Sy, rel;). Let Match be
the set of the maximum number of matchings [18] of Gj;.
We define the connectivity strength from M S, to M S; of
relation type rel; as:

| Match|
min(|MSs|, | MS|)

strength(MSg, M Sy, rely) =

Given a user specified threshold tuprei(0 < taprer < 1), we
create a relation rel; from MS; to MS, if the following
requirements are satisfied:

o strength(MSg, M Sy, rels) > taprel
o |Match| > 2

MSt

O
O

\8

Fig. 4. An Example of Connecting Multisets

In Fig. 4, |Match| = 3, min(|M S|, |M S¢|) = 3. Thus, the
connectivity strength from M .S, to M.S; is 3/3 = 1.

2) Forming Graph: After determining the relations among
multisets, we build a graph of multisets G, = (V, F) in which
V' denotes all the multisets of fop-level program elements (i.e.,
top-level class or interface) as its elements and E denotes the
relations between the multisets in V.

In order to reflect the association such as invoke and access
relation among top-level multisets, we further enhance the

Q00O
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edges in G,,, by building invoke and access relations. If a mul-
tiset My is reachable by a top-level multiset M, through de-
clare relation, we call M, as the descendent multiset of M.
For example, in Fig. 1, the multiset {DrawView.init(),
PertView.init(), NetView.init()} is a descendent
multiset of multiset {DrawView, PertView, NetView}.
Given two top-level multisets My,,1 and Mj,p2, we build a
relation of type rely from Mo, to My if there exists a
descendent multiset M1 of My,,1 has the relation of type rel;
with a descendent multiset Mgy of M;,,o. By this means, we
enhance the set of edges from E to E' and E C E’. Given
the enhanced graph G/, =< V| E’ >, we regard each maximal
connected component in G, as a potential design consisting
of top-level multisets.

Fig. 5 shows the example of an extracted maximal con-
nected component. In Fig. 5, each node represents a top-
level multiset and each edge represents an invoke relation
between two multisets. We can see that a maximal connected
component could be over large and involve multiple duplicated
designs. In Fig. 5, the multisets C={MySQLDB, OracleDB}
and D={MySQLConfig, OracleConfig} can form a
more independent design template, and so can the multi-
sets E={ExcelGen, XMLGen} and G={ExcelFormat,
XMLFormat}. We adopt a frequent-item based approach
to refining the maximal connected components into more
independent clusters of multisets.

F G
{Excel {ExcelFormat,
XMLGen} XMLFormat}
A
{AdminManger,
UserManger}
B C D

{MysQLDB, | {MySQLConfig,
OracelDB} OracelConfig}

{BasicUtil, =
/ AdvancedUtil}
E
{SimpleView,

NormalView}

Fig. 5. An Example for Maximal Connected Components

3) Refining Connected Components: The rationale of re-
finement is to split commonly invoked multisets from the
maximum connected components.

Given a maximal connected component G = (V, E), we
select Vi, = {v|v € V and v’s in-degree is 0}. For each
v € Vire, we traverse G from v with the depth-first strategy
through invoke and access edge and all the visited nodes in G
can form a traversing node set V;,. C V, denoted as V;,(v).
For example in Fig. 5, Vi,..={A, E, F}, and V;,.(4)={A, B,
C, D}, Vi.(E)={E, B, C, D}, and V;,.(F)={F, G, C, D}.

Next, we regard each traversing node set as a transaction
and each of its contained nodes (i.e., multiset) as an item,
and apply the FP Growth algorithm [19] with support of 2. It
means that, among all the transactions, we consider an item set
as frequent if it appears at least twice. Typical frequent item
sets in our example are {C, D} and {B, C, D} which appear
three times and twice among V;,.(A), V,.(E), and V;,.(F).

Among the frequent item sets, we use the following heuris-
tics to filter trivial item sets and rank the rest in terms of their
independence.

« Filter: Given a list of frequent item sets list, a frequent
item set sety € list is removed if Jsety € list which (1)
is a super set of set; and (2) has the same support with
sety. For example, the set {C} is removed as there exists
a set {C, D} with the same support.

« Rank: Given two frequent item sets, set; and seto,

— sety is ranked over sets if the support of set; is over
that of sets.

— if set; and set; have a tie in terms of support (sety
is not a super set of sety, and vice versa), we rank
sety over setq if |set1| > |seta].

Namely, the stronger support and the larger size a fre-
quent item set has, the more independent we deem it is.
In our example, the ranked list of frequent item sets is
<{C, D}, {B, C, D}>.

Algorithm 2 Refine Clustering Results

Require: a list of traversing node sets traList, an ranked list of frequent item set
fList
Ensure: a list of refined clusters of multiset clusters
1: tmpClusters + 0;
2: for each item set ¢s € fList do

3 if ist # () then

4 add is into tmpClusters;

S: for each traversing node set tSet € traList do
6: tSet < tSet \ is;

7: end for

8 for each item set set € fList do

9: set + set \ is;

10: end for
11: end if
12: end for

13: add all the non-empty traversing node set in traList into tmpClusters;
14: clusters < 0;
15: for each cluster cluster € tmpClusters do

16: clSet < split cluster into a set of connected components;
17: add all the clusters in clSet into clusters;
18: end for

19: return clusters;

Given a list of traversing node sets (i.e., “transaction”)
traList derived from a maximum connected component
G =< V,E >, and a ranked list of frequent item sets fList
we split G as described in Algorithm 2. In Algorithm 2, we go
through the ranked item sets from the most independent item
set to the least independent one (line 2). Each time when we
process a non-empty item set is € fList, we first add is into
a cluster list tmpClusters, then we remove the elements in is
from the set in traList and fList (line 3-11). After processing
all the frequent item sets, we add all the non-empty traversing
node sets in tralList into tmpClusters. Finally, in order to
ensure the elements of each cluster can form a connected
component, we further split each cluster in tmpClusters if
its elements (i.e., multisets) are not connected (line 15-18).

For the example in Fig. 5, we will have three traversing
node sets (i.e., {A, B, C, D}, {E, B, C, D}, and {F, G, C,
D}) and the ranked list of frequent item sets consisting of
two elements set; = {C, D} and sety = {B, C, D}. Then, we
first process setq, which will create a new cluster {C, D}, and
make all the three traversing node sets into {A, B}, {E, B},
and {F, G} and sety into {B}. Afterwards, we process sets,
which will create a new cluster {B} and make the traversing
node sets into {A}, {E}, and {F, G}. Therefore, we can have
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the clusters as: {A}, {E}, {F, G}, {B}, and {C, D}. Given all
the clusters with its elements connected, these clusters are the
final clusters we obtain.

D. Abstracting Design Templates

Given a list of clusters of multisets, we generate design
templates consisting of template classes, template interfaces,
template fields and template methods. Generating template en-
tities involves abstracting name, parameters, and super types.

Given the names of a multiset of corresponding entities,
we generalize these sequences by wildcards. For example, an
abstract name *View can be generalized from the multiset of
three classes {DrawView, NetView, PertView}.

In addition, we further abstract the parameters of corre-
sponded methods, and super types of corresponded classes
and interfaces. We abstract the parameters of corresponded
methods by computing the intersection of their parameter type
sets. For example, given a multiset of methods as mSet =
{m1(), m2(), m3(0)} and the set of parameters are {String,
int, float}, {String int}, and {String, int} respectively, the
abstracted parameters for mSet is {String, int}. In the same
vein, we abstract the super types of corresponded classes or
interfaces by computing the intersection of their super types.

E. Managing Templates and Generating Code

The mined templates can be further managed (i.e., refined
and customized) and used to generate code.

1) Managing and Customizing Template: We support the
following template refinements. Programmers are allowed to:
(1) remove template entities (or relations) they consider irrel-
evant; (2) add template entities (or relations) and split a large
template into several smaller ones or merge some templates
into a larger one; (3) load design templates and select the
template they wants to reuse. Customization involves fixing
name placeholders, adding or removing super types, etc. Our
tool provides a wizard that guides the programmer through
all customizable entities and relations. Once the programmer
customizes all the template entities, the tool prompts the
programmer that the template is ready for code generation.

2) Generating Code: Apart from generating the code skele-
ton, we also generate semi-implemented method bodies if
the text similarity of original method bodies is above a
threshold. When the text similarity is above the threshold,
we apply the MCIDiff technique [20] [21] on these similar
method bodies to analyze their difference. It reports the
difference as token-sequence-based differential multiset such
as {e, setScaleFactor(1.0);, setScaleFactor(2.0); }. We regard
each differential multiset indicates a potential customization
point in the body. We copy the body of the longest method
into the generated method, and generates “TODO” comments
for each of the copied statements involved in differential
multisets. For example, assume the first method in Table I is
the longest one, we will generate a comment such as “TODO:
you may additionally have the code like setScaleFactor(1.0);
or setScaleFactor(2.0);” before the empty line.

IV. ToOL SUPPORT

A snapshot and a demo video of our tool MICoDe are
available at our website [14]. MICoDe stores mined design
templates as Eclipse Modeling Framework (EMF) models. It
lists all mined design templates in Template view.

Template Visualization and Customization. To facilitate the
refinement and customization of design templates, MICoDe
visualizes design templates in a class-diagram-like template
editor. Different types of template entities (i.e., class, interface,
method, and field) in different status (i.e., configured and
un-configured) are represented by rectangles with different
colors. For example, abstracted super classes are represented
by bright orange rectangles which cannot be configured;
template classes are represented by the dark green rectangles,
which are to be customized. Similarly, template method and
template field are represented by dark blue and dark yellow
rectangles which are to be customized respectively. Double-
clicking a template entity opens a wizard dialogue which
allows programmers to customize the entity by specifying
its detailed information such as class name, package name,
parameters, etc. After the user customizes a template entity,
MICoDe will turn the color of the entity into a bright one (e.g.,
bright green, bright blue, etc.). In addition, the user can delete
or add some entities or relations to the template. The newly
added entities and relations will be used to generate code in
the same way as the template entities mined from the code.
Code Detail Comparison. Right-clicking a template entity
and choosing Show Supporting Entities menu item open the
MCIDiff view that presents the differencing results of corre-
sponding entities from which the template entity is abstracted.
The MCIDiff view shows corresponding methods side by side
and highlights their differences using different colors.

Code Generation. After a user finishes customizing the
template, he or she can utilize MICoDe to validate the “instan-
tiated” template by checking whether all the template entities
are customized. If the customized template is valid, the user
can click the Generate Code menu item to generate the code.

V. SIMULATION EXPERIMENT

We aim to answer the following questions in the experiment:

o RQI1. Whether the extracted design templates are reusable
for a new similar feature?

o RQ2. How many duplicated designs are there in existing
large code base?

A. Experiment Setup

We answer the above research questions by applying MI-
CoDe on 10 open source Java projects (see Table II) to detect
their recurring designs. We simulate code reuse tasks on those
design templates supported by over three design instances.
Suppose a design template 7" is supported by n (n > 3) design
instances, we choose one of its design instances I and generate
a new design template 7" from the other n— 1 instances. Then
we compare the template 7" and design instance I to see how
similar they are. In other words, we regard the instance I as
a design implementing a new similar feature, the similarity
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TABLE II
RECURRING DESIGNS IN OPEN SOURCE JAVA PROJECTS

Project Version Project Profile Extracted Templates Evaluation Subject Evaluation Result
#LoC #Class | #Method | #Field #Template | #Class | #Method | #Field | #Trial Template | #Trials | Precision | Recall
Apache-commons-math | 3.4.1 182192 1596 13102 3924 191 853 5038 914 37 107 0.66 0.56
FreeHEP 2.0 61662 804 5551 2643 71 217 1274 299 5 10 0.98 0.64
JFreeChart 1.2.0 96478 676 8324 2978 119 456 4524 964 5 17 0.60 0.77
JHotDraw 7.0.6 32447 350 3146 868 52 189 1103 296 4 15 0.69 0.75
JMental 5.3 37370 518 2815 1579 68 252 790 571 3 6 0.77 0.67
JMeter 3.2 102407 1044 9553 6053 190 669 3087 1463 10 31 0.62 0.58
Log4j 2.8.2 10882 127 1452 370 13 54 519 103 2 6 0.54 0.51
Soot 2.5.0 186655 2228 14191 4688 275 1302 5231 550 10 25 0.79 0.61
XChart 3.3.0 6917 102 743 282 14 61 346 92 2 5 0.89 0.70
Xerces2-j 3.3.1 127764 943 9089 5397 124 518 3429 1241 5 10 0.72 0.47
Total / 844774 8388 67966 28782 1117 4571 25341 6493 83 232 / /
Average / 84477.40 | 838.80 | 6796.60 | 2878.20 | 111.70 457.10 | 2534.10 | 649.30 | 8.30 23.20 0.69 0.60
Median / 79070 740 6937.50 | 2810.50 | 95 354 2180.50 | 560.50 | 5 12.50 0.66 0.54

between T and I indicates how reusable 7" is to create I. In
this experiment, we call each of such comparisons as a trial.
Given a design template supported by n instances, we can
have n trials.

We calculate the similarity between a design template T
and a design instance I as follows. 7' can be considered as
a declaration tree Gt = (Vr, Er) (defined in Section III-B)
where each node in Vr corresponds to a program multiset; [
can be considered as a declaration tree Gy = (V, Ey) where
each node in V; corresponds to a program element. Therefore,
a node vy € Vr is considered reusable for creating design [
if Juy € V; so that vy matches vy. Given a design template
Gr = (Vp,Er), a design instance G; = (Vr, Ey), and let
the set of matched nodes be V,,,(V,, C V;), we calculate the
precision as |V,,|/|Vr| and the recall as |V,,|/|V;].

We use precision and recall to evaluate how reusable a
design template for creating a new design instance. For a
trial (i.e., simulated reuse task), precision means how many
program elements in the template can be used for creating a
new similar feature while recall means how many program
elements in the new similar feature can be reused from the
template. High precision indicates that we do not need to
delete many program elements in the template. High recall
indicates that, apart from the code adopted from the template,
we do not need to additionally add much code to accomplish
the similar feature.

We match the nodes in G and Gy in a top-down manner
by progressively matching the nodes in the same layer in the
declaration tree. For example, we first match the nodes in the
top layer, then for each pair of matched nodes, we proceed
to match their children. When matching the set of nodes in
the same layer, i.e., V, C Vp and V] C Vj, we construct
a bipartite graph G, = (Vi, V], E) where an edge e exists
between two nodes vy (vp € Vi) and vy (v € Vi) if the
similarity between vy and vy (see Equation 1) is above a
threshold. Then we use the Blossom algorithm [22] to get the
best matching in the bipartite graph Gy,. In this experiment, we
set the field similarity threshold to be 0.6, method similarity
threshold to be 0.8, and type similarity threshold to be 0.2.

B. Result

Table II shows the details of the Java open source projects
in terms of project profiles (by lines of code, number of

classes, methods, and fields), extracted template (by number of
extracted templates, number of involved classes, methods, and
fields), number of used templates for simulating reuse tasks
(#T-Templ), number of trials (#Trials), average precision, and
average recall. All the extracted designs are available on our
website [14].

In this experiment, the recurring designs involve 4571 out
of 8388 files, which is a considerable number. MICoDe reports
1117 templates among all 10 projects, of which 83 (i.e., 7.4%)
involve over three design instances. In Table II, we can see
that the summarized templates can be reused with a reasonably
good accuracy. The average precision and recall are 0.69
and 0.60 respectively. It means that, on average, 69% of the
elements in a template can be reused to accomplish the similar
feature, and 60% code of new similar feature can be adopted
from a template.

We further inspect the trials with low precision or recall.

1) Low Precision Trials: Low precision usually happens
when the design template is enriched with more elements
than a design instance needs. Fig. 6 shows a reuse trial with
a low precision (i.e., 10%) in the JMeter project. Fig. 6 (a)
shows a template captures the interaction of 4 template classes
such as *SamplerGui, *Sampler, *ConfigGui, and
xClient. Fig. 6 (b) shows a design instance used to evaluate
the template.

*ConfigGui = *Client
E: I I
*SamplerGui =1 *Sampler xampGe:iamp ! ExampleSampler’
(a) (b)

Fig. 6. An Example of Low Precision

In the JMeter project, some sampler GUIs such as
TCPSamplerGui interact with a configure GUI while others
such as SMTPSamplerGui do not. MICoDe aims to capture
the design structure of all the design instances comprehen-
sively. Thus, it reports a super set of four abstracted classes
and their relations. For the trial in Fig. 6, the design in-
stance {ExampleSamplerGui, ExampleSampler} only
matches *SamplerGui and *Sampler; and *ConfigGui
and «Client declare a large number of abstracted methods
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and fields. In such a case, the design instance is only a “subset”
of the template, which leads to a low precision.

Nevertheless, in practice, MICoDe allows programmers to
manually customize the template for their own need. More-
over, once the programmers find the additional abstracted class
not useful, they can simply delete it on template, which is not
effort-consuming.

2) Low Recall Trials: Low recall lies in that some de-
sign instances involve additional functions other than that
adopted from the template. Still in JMeter project, one
design instance involves two classes ProxyControlGui
and ProxyControl, which has a low recall (i.e., 9%)
after compared to the design template of {*ControlGui,
*Control}. In this trial, compared to template *Control
class, ProxyControl class additionally declare a great num-
ber of new fields/methods (such as CERT_ALIAS, CERT_-—
ALIAS, startProxy (), etc.) for implementing proxy rel-
evant features. Nevertheless, the precision of this trial (i.e.,
95%) is fairly acceptable. In practice, it is usual for program-
mers to enhance additional features based on existing template
code. Therefore, we deem the performance of MICoDe (aver-
age 60%) is acceptable.

In conclusion, the experiment shows that recurring designs
are frequent in open source code projects and the templates
extracted by MICoDe are generally reusable.

C. Threats to Validity

One threat is that our simulation cannot be applied on the
templates with only 2 instances. Without authoritative template
benchmark of the open source projects, it is hard to avoid
subjectiveness and bias when evaluating the reusability or
meaningfulness of design templates. We will cooperate with
industrial partners and deploy MICoDe in real developing
environment to generalize our results. The other threat is that
we can generate different templates with different similarity
thresholds. In this experiment, we set the thresholds by our
preliminary observation and experience. We will conduct a
more comprehensive study for the impact of thresholds.

VI. USER STUDY

MICoDe aims to enable easy and systematic reuse of
existing code designs in code base. To evaluate whether
MICoDe achieves this goal, we conducted a user study to
investigate the programmers’ efficiency in completing reuse-
based development task when they are with and without the
MICoDe tool.

A. Study Design

We recruited 16 graduate students from Fudan University,
China. We conducted a pre-study survey for these participants
to understand their programming experience and capability.
These participants were matched in pairs by experience and
capability, and then randomly allocated into experimental or
control group. The experimental group Gy (participants P1-P8)
used the MICoDe tool to perform the software development
task, while the control group G4 (participants P9-P16) used

Eclipse IDE to perform the same task. We provided a 3-hour
tutorial for the experimental group and training session of the
MICoDe tool is conducted 3 hours before the experiment. The
chosen training example in our tutorial is irrelevant to the task
assigned to participants in the experiment so that we can make
the participants familiarize themselves with the tool features
while avoid introducing experimental bias. According to our
survey, all the participants are familiar with Eclipse IDE, thus
we did not provide tutorial and training on Eclipse IDE.

We chose a JHotDraw template of creating a new
JHotDraw-based Web Applet as our subject system in the
user study. The reason for choosing this template lies in
two-fold. First, such a template is extracted from a demo
package of JHotDraw showing users how to build their own
drawing application based on JHotDraw API. Since none of
the participants have experience in JHotDraw project, it is
more comprehensible than other design templates involving
more detailed JHotDraw framework knowledge. Second, the
size of the template is appropriate (consists of 3 template
classes, 20 template methods, and 14 template fields), which
is neither too trivial (so that the task can be finished without
sufficient thought), nor too complicated (so that everybody is
exhausted to fail).

The demo package from which the selected template is
extracted provides 6 examples of implementing a JHotDraw-
based Applets for drawing application within web browser,
namely, Pert applet, Net applet, Draw applet, SVG applet,
ODG applet, and Teddy applet. In this user study, we asked
the participants to develop a Pert applet based on the other
five applet samples. The participants of the control group were
given five existing applet samples (Draw, Net, ODG, SVG,
and Teddy) along with their clone information. They were
free to reuse any code example in these five samples that they
deemed relevant. The participants of the experimental group
were given the template mined from the JHotDraw project
with Pert applet sample removed. They needed to customize
the template to generate code for the Pert applet. They also
have access to the original 5 applet samples.

We asked the participants to complete the task in two hours.
The participants were required to run a full-screen recorder
while they were working on the task. After the participants
finished the task or the time run out, they submitted task
videos and the Java Applets they developed. The task videos
allow us to time the task completion process and analyze
the participants’ behaviors during the task. Furthermore, each
participant was requested to fill in a post-experiment survey
for us to collect their feedbacks on the task and tool usage.

We evaluated the participants’ task efficiency by comparing
time to complete basic features (e.g., applet lifecycle man-
agement and basic JHotDraw framework extension), time to
complete advanced features (e.g., Pert-specific visualization),
and total task completion time of the participants in the two
study groups. Advanced features involve cross-cutting code
among different applets, which requires good understanding
of alternative solutions in different Applets. For the MICoDe
group, total task time also includes template customization
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time. These time metrics were estimated from the participants’
task videos.

B. Results

Table III and Table IV show the results. Overall, the MI-
CoDe users completed basic features, advanced features, and
the whole task more efficiently. 7 MICoDe users completed
the development task (i.e., implemented all basic and advanced
features and passed all our test cases), while 6 Eclipse users
completed the task. The MICoDe user P8 and the Eclipse user
P12 failed to complete some advanced features. The Eclipse
user P16 failed to complete the basic feature and did not
submit a working applet. The relevant time metrics of these
three participants were invalid for comparison because these
participants would need more time to complete the task.

TABLE III
TASK EFFICIENCY OF MICoDe GROUP

Participant|ConfigTime(m) | BasicTime(m) | AdvanceTime(m) | Total Time(m) | Success

Pl 11.28 35.35 14.85 61.38 Yes
P2 9.00 38.80 15.2 63.00 Yes
P3 11.17 42.97 16.45 70.58 Yes
P4 14.00 44.67 27.33 86.00 Yes
P5 6.78 62.38 21.68 90.85 Yes
P6 4.33 65.13 30.38 99.85 Yes
P7 9.63 73.88 17.00 100.52 Yes
P8 16.00 66.45 / / No

Average 10.28 53.69 20.41 81.74 /

Std.Dev. 3.50 13.85 5.79 15.46 /

TABLE IV

TASK EFFICIENCY OF Eclipse GROUP

Participant|ConfigTime(m) | BasicTime(m) | AdvanceTime(m) | Total Time(m) | Success

P9 / 41.00 14.67 55.67 Yes
P10 / 50.52 22.43 72.95 Yes
P11 / 87.00 21.60 108.60 Yes
P12 / 73.67 / / No
P13 / 60.17 41.33 101.50 Yes
P14 / 63.00 38.00 101.00 Yes
P15 / 64.32 43.98 108.30 Yes
P16 / / / / No
Average / 62.81 30.34 91.35 /
Std.Dev. / 13.81 11.18 19.98 /

We used Wilcoxon’s matched-pairs signed-ranked tests to
to evaluate the difference of the two groups in terms of
time on basic features (BasicTime), time on advanced features
(AdvanceTime), and total task time (TotalTime). The results
are shown in Table V. At the 0.05 significance level, we
reject the null hypothesis for AdvanceTime, i.e., there is a
significant difference between the two study groups in terms
of the time on accomplishing advanced features. Moreover,
the MICoDe group outperformed the Eclipse group in Ad-
vanceTime metrics. Thus, we conclude that the MICoDe users
accomplished the advanced features of JHotDraw-based Pert
applet in significantly shorter time.

C. Analysis

Based on the recorded video and interviews with the par-
ticipants, we summarize the reason as follows. Some MICoDe
users (e.g., PS5, P6) have not significantly advantage in com-
pleting basic features, compared with the Eclipse users with
similar program experience (e.g., P13, P14). Although the
number of the basic features is large, the implementations of

TABLE V
SIGNIFICANCE TEST FOR USER STUDY
H Var Group Sampl p Decision

- MICoDe 7

BasicTime Eclipse = 0.237 Accept

HO AdvanceTime MICoDe 6 0.046 Reject
Eclipse 6
. MICoDe 6

TotalTime Eclipse 5 0.075 Accept

basic features are usually straightforward, which requires little
comparison between multiple applet samples for reference.
Thus, copy-paste-modify is an efficient way for reusing basic
features. Furthermore, the Eclipse tools (such as text replace-
ment and rename refactoring) can save the Eclipse users a part
of time in modifying copied code.

Nevertheless, the MICoDe users outperformed the Eclipse
users in advanced features. The Eclipse users had to spend
more time to understand design structure and implementation
alternatives of the reused code in order to properly develop the
advanced features. In contrast, the design template presented
by MICoDe tool shows the design structure of the to-be-
reused feature. This makes it easier for the MICoDe users to
compare, understand and customize the code of the advanced
features. Note that the BasicTime accounts for a large portion
of the total task time as the number of basic features is large,
which reduces the differences of total task time between the
MICoDe users and the Eclipse users. Nonetheless, MICoDe
users accomplished the task about 10 minutes faster than
Eclipse users on average. In addition, the difference of two
groups in TotalTime is near-significant (p value is 0.075,
slightly higher than the set 0.05 significance level). Thus, we
deem that MICoDe users had better performance than Eclipse
users in this task.

Thus, we conclude that MICoDe tool can help programmers
more efficiently accomplish reuse-based development tasks
when the tasks require understanding a big design picture and
comparing implementation alternatives.

D. Threats to Validity

There are three threats to our user study. First, we as-
sume that two study groups are “equivalent” despite that
individual difference always exists. To address this threat, we
carefully compared participants’ experience and capabilities
and randomly allocate comparable participants into the two
groups. Second, our training session might introduce addi-
tional “warm-up” experience for experimental group on using
MICoDe, which can introduce experimental bias. According
to our pre-study survey, all the participants are familiar with
Eclipse IDE (have Eclipse as their most frequent IDE). There-
fore, we deem that such a threat is largely mitigated. Last, we
conducted the controlled experiment only on one Java design
as the experimental session had time limitation. Further studies
are required to generalize our findings on more systems.

VII. DISCUSSION

In this section, we discuss (1) the difference between design
template and design pattern [23] and (2) both reuse and
refactoring opportunities conveyed by design templates.
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Difference with Design Pattern. Our mined design template
can also be regarded as a “pattern” of design which is,
however, different from design pattern. A design pattern is
usually intentionally created for code abstraction. In contrast,
a design template is usually unintentionally created by code
duplication. Therefore, the form of design patterns are more
fixed while that of design templates are more dynamic. Hence,
they must be detected with different techniques and convey
different information. Technically, the design patterns can
be detected by matching code with enumerable rules, while
design templates should be mined with a more generalized
way. Semantically, the design pattern describes general and
project-independent design structure while design template de-
scribes recurring designs implementing similar project-specific
feature. Despite of their difference, they are not exclusive. We
observe that some of our mined design templates can involve
design pattern such Factory pattern and Strategy pattern [14].
Reuse vs Refactoring Opportunities. In this work, design
templates are largely regarded as reuse opportunities. The rea-
son lies in as follows. Despite that design templates are usually
caused by duplication, as showed in Fig. 1, abstraction has
already been adopted. Thus, the duplication occurs in terms
of code structure rather than code text. With the well-organized
duplication, recurring designs usually convey project-specific
convention for implementing a similar feature. Nevertheless,
when the duplicated classes lack sufficient abstraction, they
can also convey refactoring opportunities indeed. Therefore,
we deem that it is important to detect recurring templates in
the first place, so that we can decide the follow-up maintenance
measure of either reuse or refactoring.

VIII. RELATED WORK
A. Clone Detection

Both our work and clone detection techniques base on the
code similarity measurement. Many researchers transfer code
into an abstract form (such as string [24], token list [25] [26],
AST [27] [28], and PDG [29]) to compare their similarity. A
comprehensive survey of code clone reach can be found in
[30]. Clone detection techniques aim to detect similar code
fragments across software systems. In contrast, our approach
detects and extracts correlated similar program elements,
which unveils a bigger picture in terms of “similarity”, i.e.,
recurring designs reusable for code generation.

B. Code Structure Pattern

Our approach starts at clustering or corresponding relevant
program elements for abstraction, which is similar to a set
of code structure pattern mining work. Basit et al. [4], [5]
leverage frequent mining technique to mine structural clones
indicating possible correlation between groups of code clones.
Qian et al. [6] proposed a technique to mine logical clones
to reveal similar high-level business logic in code base.
Moreover, Lin et al. [31] proposed a technique to summarize
syntactic patterns of code clones and aggregate the code clones
with similar patterns. Our approach is different from these
techniques in two folds. First, the patterns mined from above

techniques are less expressive for the purpose of revealing
recurring designs. In contrast, our approach is able to capture a
rich set of program elements and program relations so that the
mined template could represent sophisticated design in prac-
tice. Second, the patterns of the above techniques are generated
as knowledge, meanwhile, our mined design templates are
customizable for code generation, which can better facilitate
programmers in real reuse-based software maintenance tasks.

C. Reverse Engineering and SPL Re-engineering

Many reverse-engineering methods [32], [33], [34], [35],
[36], [37], [38] have been proposed to recover system design
or architecture from the source code of a software system. We
consider reverse-engineering methods as a basis and leverage
it for the purpose of template mining. With similar purpose,
some research work reverse-engineers source code for re-
engineering legacy variant products into software product
line [9], [10], [11], [12], [39], [40]. Haslinger et al. [39] ex-
tracted SPL feature models by analyzing configuration scripts
of variant products. Valente et al. [41] proposed a semi-
automatic approach to identify the code of optional features
in SPLs. Martinez et al. [9] proposed an approach to migrate
existing similar model variants into a software product line. In
addition, Fischer et al. [8] developed a tool called ECCO to
utilize reusable features from existing similar products to help
programmers systematically compose a new variant product.
These SPL re-engineering approaches often aim to recover
a system-level SPL architecture for systematically developing
and maintaining a set of variant products in a specific domain.
Our work is similar with the above technique for the same
purpose of code reuse. Nevertheless, our main differences with
these approaches lie in that (1) we take code base instead of
variant products or model as input and (2) the design template
is extracted in more finer grain.

IX. CONCLUSION AND FUTURE WORK

The paper presents an approach to detecting and extracting
implicit recurring code designs in code base into customizable
design templates for code generation. We developed tem-
plate editor to manage and customize design templates and
code generator to generate code skeleton filled with semi-
implemented code. Our simulation experiment shows that the
design templates are useful to facilitate design-level reuse
task. Our user study shows that the MICoDe tool helps the
programmers to reuse recurring designs in code base more
efficiently, compared with copy-paste-modify practice. In the
future, we aim to apply our approach to crowdsourced code
examples available online (e.g., Github) to build feature-
oriented template libraries.
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